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Preface

Welcome to life in the computer fast lane—programming with assembly lan

guage. Programs written with assembly language have the execution speed re

quired to create lively graphics and sounds in games and educational software.

Precision measurement, control, and communications applications also require

the speed provided by assembly language programming.

In writing this book, we assumed that you have a beginning knowledge of the

BASIC programming language. You do not have to be an expert, but it will help

you to learn assembly language if you can write programs in either BASIC or

some other high-level language. Most programmers do not begin their program

ming career by learning assembly language: they begin with a high-level lan

guage such as BASIC, FORTRAN, or Pascal. Once you learn assembly lan

guage, you will have the best of both worlds: the speed provided by assembly

language and the computational ease of BASIC.

We have marked some sections and the contents of this book with an asterisk

to indicate that these sections contain more difficult material that may be omit

ted if you are a beginning programmer. Later, when you have acquired greater

programming experience, you may wish to return to these sections to learn these

additional concepts.

How do you learn assembly language? Not simply by reading a book about

it. It seems there are several important factors. First, you must become ac

quainted with the instructions available in assembly language, just as you had to

learn the BASIC commands. This implies more than simply memorizing the in

struction set of the 6510 microprocessor inside the Commodore 64. It means that

you can predict the outcome when instructions are executed. You must eventu

ally be able to think like a microprocessor.

Next, you must study and understand simple programs. It is always educa

tional to attempt to understand how another person's programs work. You will

be given many examples in this book so that you can see how each instruction is

used. In this context, it is important to have a microcomputer with which to

execute the programs. It is probably impossible to learn assembly language in

the abstract, that is, without a microcomputer, just as it is impossible to learn to

play the piano without actually having a piano on which to practice. We have

tried to make the sample programs relevant. That is, you should learn some

thing about your computer as you learn about assembly language program-

IX



x Preface

ming. Almost all of the programs produce an easily observable result so that

you can see immediately if the program is properly executing.

Finally, you must write, debug, and execute programs. We have provided pro

gramming exercises and problems to give you this practice, and they are given

without answers. Programming problems in the real world also come without

answers, and the most important activity you can undertake in learning to write

programs is to write your own. If you will pardon the metaphor, sooner or later

you have to remove the training wheels. Writing, debugging, and executing as

sembly language programs provides challenges, frustrations, and rewards just

like any other human activity. Expect to make a few mistakes along the way, and

expect that your success will be roughly equivalent to your effort. Always avoid

writing grandiose programs: at the beginning of the book, be content with writ

ing programs having several lines, moving to programs with 10 to 20 lines near

the end of the book. Our examples and exercises should suggest many possible

applications. It is up to you to try writing these programs until at last you be

come an excellent programmer.

Good luck to you.

Marvin L. De Jong

Department of Mathematics-Physics

The School of the Ozarks

February, 1984
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The Commodore 64

Microcomputer System

I. Introduction

Human language, whether written or spoken, is a mechanism we use to

communicate our thoughts to other people. On occasion, these thoughts may

be a set of instructions for another person to follow in order to accomplish

a specific task. In that sense, human language is very much like a computer

programming language. A computer programming language is a mechanismwe

use to communicate a set of instructions to the computer to make it accomplish

a task. With few exceptions, programming languages are written rather than

spoken. You are already somewhat familiar with the programming language

known as BASIC. It is likely that you began your programming experience

on the Commodore 64 by learning the BASIC programming language. Now

you are about to learn a new language called assembly language. We will not

attempt a one-sentence definition of assembly language at this point. That

would be as useful as defining French as that language used by French people.

For the moment, think of assembly language as another way of com

municating with the computer. This entire book is a definition of assembly

language.

It may be worthwhile to point out that many computer programmers feel

that learning to use assembly language is more difficult than learning BASIC.

A programming language that "approximates" human language is frequently

called a high-level language. A high-level language makes use of familiar words

like IF.. .THEN..., GOTO, and PRINT, which most people can understand.

BASIC is a high-level language. On the other hand, in assembly language you

will encounter more foreign terms like LDA, ROL, and BIT. Assembly

language is much closer to the "language" that the components of the

microcomputer use to communicate with each other in order to perform a task.

Since we tend to regard computers as much lower than ourselves, we call

assembly language a low-level language.
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Even if you have almost no knowledge of what is happening inside the

microcomputer, it is quite easy to write computer programs using a high-

level language such as BASIC. Indeed, that is one of the motivations for using

BASIC; you do not have to think in great detail about what is taking place

inside the microcomputer. On the other hand, to write assembly language

programs you must at least know something about the ' 'brain'' of the

Commodore 64, its 6510 microprocessor. It is also extremely useful to have

an elementary understanding of the structure of the microcomputer andhow

it works. The purpose of this chapter is to provide you with the information

about the microcomputer that will be important to you as you learn assembly

language. If you are already mildly familiar with the 6510 microprocessor

and you already have an elementary understanding of how the Commodore

64 works, then you can proceed directly to the next chapter; otherwise, it

will be profitable to spend some time studying this first chapter. Feel free,

however, to experiment with several starting points in the book, especially

with any of the first three chapters. Indeed, you may wish to skim these

three chapters and then start at what, in your judgment, is the appropriate

point.

All BASIC programs are written using familiar base-ten (decimal) numbers.

On the other hand, experienced assembly language programmers think and

work with hexadecimal numbers and binary numbers. Hexadecimal numbers have

a base of sixteen while binary numbers have a base of two. Appendix A of

this book explains these two number systems in more detail. Please refer to

this appendix if you have had no experience with hexadecimal or binary

numbers.

II. Components of the Commodore 64

A microcomputer is a system of components including:

• A microprocessor

• ROM (read only memory)

• R/W (read/write) memory

• I/O (input/output) devices

These components are interconnected by three sets of electrical conductors

known as buses. We will briefly describe the components, then the buses. A

sketch of the microcomputer system is shown in Figure 1-1.

The words "microcomputer" and "microprocessor" are often confused.

Your Commodore 64 is a microcomputer consisting of the components men

tioned above. On the other hand, the microprocessor is just one component

of the microcomputer. The 6510 microprocessor is a 40-pin integrated circuit

that is responsible for controlling everything that happens in the microcom

puter. Photographs of the 6510 are shown in Figure 1-2. The 6510

microprocessor moves information (data) about in memory, it performs all
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the arithmetic operations that take place, and it makes simple decisions based

on certain events (for example, depending on which keys are pressed on the

keyboard).

> 8-BIT BIDIRECTIONAL DATA BUS DBO - DB7 |

16-BIT ADDRESS BUS ADO - AD15

Figure 1-1. Simplified block diagram of the Commodore 64 microcomputer system.

Of course, the microprocessor has no will of its own, nor does it think for

itself. It operates under the control ofprograms writtenbyhumanbeings. This

book will teach you how to control the microprocessor by writing assembly

language programs. These programs must be translated into information the

microprocessor can understand, and then they must be stored in the memory

of the microcomputer system. The 6510 microprocessor is capable of identi

fying 65,536 different memory locations. Each memory location stores eight

bits (binary digits) of information. Abinary digit has two possible values, one

or zero. The eight bits are designated

D7, D6, D5, D4, D3, D2, Dl, DO

This means that bit zero, or DO, is the least-significant bit, while bit seven,

D7, is the most-significant bit. Just as in the case of decimal numbers where

the least-significant digit is the rightmost digit and the most-significant digit

is the leftmost digit, a binary number such as

10010100

has its least-significant bit on the right and its most-significant bit on the left.

(Computer scientists, unlike other of earth's creatures, always start counting

with the number zero rather than the number one. Thus, the eighth bit in a

memory location is called "bit seven/')
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(a)

Figure 1 -2. Photograph of the Commodore 6510 microprocessor, (a) The 6510

microprocessor, (b) The 6510 microprocessor inside the Commodore 64.

The eight bits of information in a memory location collectively form an eight-

bit code or an eight-bit number. The eight-bit code is frequently called a byte of

information (or data) or, more simply still, a byte.

There are two types of memory, ROM (read only memory) and R/W (read/

write) memory. The latter form of memory is frequently called RAM (random

access memory). As the name implies, the microprocessor cannot modify the

information stored in ROM, it can only copy information from this form of

memory into the microprocessor. This process is known as a read operation.
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Two important and lengthy programs have already been written and stored

in the ROM inside your computer. These programs are the operating system

and the BASIC interpreter. Both the operating system and the BASIC inter

preter are written in the native language of the 6510 microprocessor, namely

6510 machine language. We will shortly describe machine language in more

detail. For the time being, simply be aware that it consists of eight-bit codes

stored in memory. The 6510 microprocessor is designed and constructed so

that when power is first applied, the microprocessor will begin executing a

machine-language program stored at a particular location in memory. This

location corresponds to the beginning of the operating system. Among many

other things, the operating system allows you to enter information on the

keyboard, and display and edit information on the screen.

The BASIC interpreter is a machine language program that translates the

BASIC commands that you give the computer into its native language. The

microprocessor begins to execute programs stored in ROM as soon as you

turn on the computer, and the Commodore 64 system moves quickly to the

BASIC interpreter when power is first applied, giving you the READY

prompt.

Now consider read/write (R/W) memory. The 6510 cannot only read infor

mation in R/W memorybut it can also transfer information from itself to R/W

memory. This process is known as a write operation. This form of memory

is called "R/W memory'' because with it both read and write operations are

possible. While information in R/W memory is volatile, meaning that it dis

appears when power is removed, the information in ROM is nonvolatile.

Removing the power to the microcomputer does not affect the information

stored in ROM.

Information from the world outside of the computer is transferred to it by

means of input devices. The keyboard of the Commodore 64 is the most ob

vious input device. It is not connected directly to the microprocessor; instead,

a special integrated circuit, known as a 6526 CIA (complex interface adapter),

is used to connect the 6510 to the keyboard. A device that is connected be

tween the microprocessor and another component of the microcomputer

system is known as an interfacing device or interfacing adapter. The 6526 VIA

is very much like R/W memory in the sense that information can be transferred

back and forth between it and the microprocessor. Other input devices in

clude cassette tape players, disk drives, and modems. Again, these devices

are not usually connected directly to the microprocessor. It is simpler to inter

face these input devices to the microprocessor either with additional electronic

circuitry or with a 6526 CIA, or both.

Information is transferred from the computer to the world outside it by

means of output devices. The most obvious output device is the television set

or video monitor that you have connected to the Commodore 64. Again,

greater simplicity and versatility are achieved when a special integrated cir

cuit, known as the 6567VIC (video interface chip), is used to interface the 6510

to the video display. Another integrated circuit, the 6581 SID (sound inter

face device), is used to provide sound output. Information is transferred back
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and forth between the 6510 microprocessor and both the 6567 VIC and the

6581 SID in exactly the same way as information is transferred to and from

R/W memory. Circuitry on the the 6567VIC and the 6581 SID transforms this

information into video and sound signals, respectively.

A diagram that shows the addresses of the locations occupied byROM,

R/W memory, and the I/O devices is called a memory map of the micro

computer system. A memory map of the Commodore 64 system is shown

in Figure 1-3. To show some of the important features of the memory map,

Figure 1-3 is not drawn to scale. Because the Commodore 64 micro

computer system switches blocks or banks of memory in and out of active

use, a technique called memory management, it has several possible memory

maps. For simplicity, in Figure 1-3 we show only the most common

memory map that we will encounter. Notice that the addresses are ex

pressed with hexadecimal numbers. Also note that hexadecimal numbers

are prefaced with a "$" symbol.

III. Microcomputer System Buses

We turn next to an explanation ofhow the components of a microcomputer

system are interconnected. Refer once again to Figure 1-1. Consider, first, a

read operation in which a byte (eight bits of information) is copied from a

memory location (or I/O device) into the microprocessor. The 6510 must first

identify the memory location that it wishes to read. Like your house, a memory

location is identified by a number called its address. The microprocessor signals

the memory location it wishes to read by placing its address on the microcom

puter's address bus. The address bus is a set of 16 electrical conductors that

connect the microprocessor to R/W memory, ROM, and the I/O interfacing

circuits.

The microprocessor works in the binary number system; that is, it places

either a one or a zero on each of the 16 conductors to produce a 16-bit binary

number. Clearly, a number cannot be sent along a wire conductor. However,

there is common agreement among the components of a microcomputer—

agreement built into it by its designers—that a voltage near five volts cor

responds to a binary one, while a voltage near zero volts corresponds to a

binary zero. If an address line is to correspond to a "one/' then the

microprocessor makes the voltage on the address line five volts. If an address

line is to correspond to a "zero," then the microprocessor makes the voltage

on the line zero.

The 16 address lines are numbered

AD15, AD14, AD13, ..., AD2, ADI, ADO

Imagine these 16 lines as being ordered with ADO on the right and AD15 on

the left. Then they can be thought of as representing a 16-bit binary number
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COMMODORE 64

OPERATING SYSTEM

(ROM)

INPUT/OUTPUT

DEVICES

4KR/W

MEMORY

BASIC INTERPRETER

(ROM)

40KR/W

MEMORY

THE STACK

PAGE ZERO

IOP

DDR

$E000 - $FFFF

$D000 — $DFFF

$C000 - $CFFF

$A00O — $BFFF

$0200 — $9FFF

$0100 —$01FF

$0002 - $00FF

$0001

$0000

Figure 1 -3. Memory map ofthe Commodore 64 microcomputer. To show certain
details, this map is not drawn to scale.
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where ADO is the least-significant bit, the rightmost bit, and AD15 is the most-

significant bit, the leftmost bit. Then the available addresses are:

BINARY DECIMAL HEXADECIMAL

0000 0000 0000 0000 0 $0000

0000 0000 0000 0001 1 $0001

0000 0000 0000 0010 2 $0002

1111 1111 1111 1111 65535 $FFFF

where we have collected the bits into groups of four for easy reading. The

smallest address is 0000 0000 0000 0000 and the largest possible address is 1111

111111111111.

you had a dumb computer with only one address line. Thenyou would have

two addresses, namely, zero and one, so you could address two memory loca

tions. If the computer had two address lines, then you could have four ad

dresses, namely, 00,01,10, and 11, corresponding to the four binary numbers

that you can construct from two binary digits. This, only slightly smarter, com

puter could address four memory locations. A computer with three address

lines could address eight locations. Notice that a pattern develops since

22=4

23=8

In other words, the number of memory locations that can be addressed by a

microcomputer with n address lines is 2n. Thus, if a microprocessor had 10

address lines, it could identify 210 or 1,024 memory locations. A group of 1,024

memory locations is commonly called a "K" of memory. If you had 2K of

memoryyou would have 2,048 memorylocations. The 6510 microprocessor in

side the Commodore 64 has 16 address lines so it can address 216 or 65,536 loca

tions. 65,536 = 64*1,024 so the Commodore 64 can address 64K of memory.

Actually, the "64" in the name of this computer refers to the amount ofR/W

memory available in the Commodore 64. With the memory management

scheme mentioned earlier, the Commodore can switch in large banks of R/W

memory to replace ROM. Large amounts of R/W memory are important for

certain tasks, such as word processing. Large amounts of R/W memory are

also necessary if you wish to use a high-level language other than BASIC, such

as Pascal. When another language is used, the BASIC interpreter in ROM is

of no use, and it is extremely useful to be able to replace it with R/Wmemory.

Suppose the microprocessor identifies the particular memory location it

wishes to read by placing the address on the address bus. How do the eight

bits of information get from the memory location to the microprocessor? There

is another bus that connects the various components in the microcomputer

system. This eight-conductor bus is called the data bus.The eight data bus con

ductors are numbered

DB7, DB6, DB5, DB4, DB3, DB2, DB1, DBO
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When a memory location is read, each of the eight bits in a memory location

controls the voltage level on a corresponding line of the data bus. The micro

processor interprets the voltage levels as binary ones or zeros, and therefore

it knows what eight-bit code is stored in the memory location it identified.

A byte can be transferred from the microprocessor to a R/W memory loca

tion in a similar fashion. First, the microprocessor places on the address bus

the address of the memory location to which it wishes to write. Then the

microprocessor modifies the voltage levels on the data bus to represent

the eight-bit code it wishes to transfer to memory. The memory device inter

prets these voltage levels as binary ones and zeros and stores them.

Notice that information can go in two directions on the data bus. In a read

operation, an eight-bit code is transferred frommemory to the microprocessor.

In a write operation, an eight-bit code is transferred from the microprocessor

to memory. This is why the data bus is called a bidirectional bus. We have

described this in Figure 1-1 by having the arrows on the data bus point in two

directions, indicating that information can flow in two directions.

Here are a few more subtle problems to consider. How does a memory loca

tion distinguish between read and write operations when it is addressed by

the microprocessor? Moreover, how does it know when it should respond?

The answers lie in additional information that the microprocessor supplies

on the control bus. One line on the control bus is called the R/W (read/write)

line. If a read operation is to take place, the microprocessor will place a five-

volt signal on the R/W line. If a write operation is to take place, the

microprocessor will bring the R/W line to zero volts.

Another line on the control bus carries a clock signal. All read and write opera

tions are synchronized with this clock signal so that the various components

of the systemknow when they are to respond. In the Commodore 64 system,

the clock ticks at a rate of 1,022,727 times a second. In other words, it takes

a little less than one millionth of a second (one microsecond) for a read or write

operation to take place. The clock signal actually is a square wave that oscillates

back and forth between zero volts and five volts at a regular rate. The clock

rate is not described in terms of ticks, but rather in terms of clock cycles. A clock

cycle is described in Figure 1-4. In the case of the Commodore 64, the clock

rate is 1,022,727 cycles per second. A cycle per second is a Hertz, abbreviated

Hz. Thus, the clock frequency is 1.022727 MHz (Mega is one million).

IV. The Microcomputer in Action

You now know how information is moved around inside the microcom

puter. Although read and write operations are of the greatest importance to

the operation of a microcomputer, very little is accomplished by simply

moving eight-bit codes back and forth between the 6510 microprocessor and

memory. Information must eventually be processed. We turn next to a brief

description of some of the processes or operations that can be achieved by

the 6510 and an explanation of how they are accomplished.
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VOLTAGE

5 VOLTS

0 VOLTS -
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W— ONE CYCLE -►>
I
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TIME

Figure 1-4. The clock signal of the Commodore 64 microcomputer system. The

clock frequency is 1.022727 MHz.

To process information, the 6510 microprocessor was designed and built

to carry out a certain number of instructions. These instructions make up the

instruction set of the microprocessor. An instruction consists of one, two, or

three eight-bit codes. Because it is difficult for human beings to remember

eight-bit codes, the instruction set is also described with a group of three-letter

"words'7 called mnemonics. Some examples are LDA, STA, BIT, ROL, and

JSR. The mnemonics of the 6510 instruction set and an English-language

description of each instruction is given in Table 1-1. This book is, in one sense,

[aboration of Table 1-1. The mnemonican elat

assembly language.

i mnemonics are central to programming in

Table 1-1. English-language description of the 6510 instruction set.

Mnemonic Description

Data Transfer Instructions

LDA Copy the code in a memory location into the accumulator.

LDX Copy the code in a memory location into the X register.

LDY Copy the code in a memory location into the Y register.

STA Transfer the code in the accumulator to a location in memory.

STX Transfer the code in the X register to a location in memory.

STY Transfer the code in the Y register to a location in memory.

TAX Transfer the code in the accumulator to the X register.

TXA Transfer the code in the X register to the accumulator.

TAY Transfer the code in the accumulator to the Y register.

TYA Transfer the code in the Y register to the accumulator.
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Table 1-1. English-language description of the 6510 instruction set (continued).

Mnemonic Description

Arithmetic and Logical Instructions

ADC Add the number in a memory location to the number in the accumulator.

Add the value of the carry flag. Place the sum in the accumulator.

SBC Subtract the number in a memory location from the number in the ac

cumulator. Complement and subtract the value of the carry flag. Place the

difference in the accumulator.

AND Form the logical AND of the code in a memory location and the code in the

accumulator. Place the result in the accumulator.

ORA Form the logical OR of the code in a memory location and the code in the

accumulator. Place the result in the accumulator.

EOR Form the EXCLUSIVE OR of the code in a memory location and the code

in the accumulator. Place the result in the accumulator.

Test Instructions

CMP Subtract the number in a memory location from the number in the ac

cumulator. Modify the flags in the P register.

CPX Subtract the number in a memory location from the number in the X register.

Modify the flags in the P register.

CPY Subtract the number in a memory location from the number in the Y register.

Modify the flags in the P register.

BIT Form the logical AND of the code in a memory location and the code in the

accumulator. Modify the Z flag. Copy bit seven of the memory location in

to the N flag. Copy bit six of the memory location into the V flag.

Register Shift and Modify Instructions

INC Increment the number in a memory location by one.

DEC Decrement the number in a memory location by one.

INX Increment the number in the X register by one.

DEX Decrement the number in the X register by one.

INY Increment the number in the Y register by one.

DEY Decrement the number in the Y register by one.

ASL Shift the code in a memory location or the accumulator left by one bit. Place

a 0 in bit zero. Shift bit seven into the carry flag.

LSR Shift the code in a memory location or the accumulator right by one bit. Place

a 0 in bit seven. Shift bit zero into the carry flag.

ROL Rotate the code in a memory location or the accumulator left by one bit.

Rotate the carry flag into bit zero and bit seven into the carry flag.

ROR Rotate the code in a memory location or the accumulator right by one bit.

Rotate the carry flag into bit seven and bit zero into the carry flag.
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Table 1-1. English-language description of the 6510 instruction set (continued).

Mnemonic Description

Flag Set and Clear Instructions

CLC Clear the carry flag C to zero.

SEC Set the carry flag C to one.

CLD Clear the decimal mode flag to zero.

SED Set the decimal mode flag to one.

CLI Clear the interrupt disable flag I to zero.

SEI Set the interrupt disable flag I to one.

CLV Clear the overflow flag V to zero.

Branch Instructions

BCC Branch if the carry flag C is clear.

BCS Branch if the carry flag C is set.

BNE Branch if the zero flag Z is clear.

BEQ Branch if the zero flag Z is set.

BPL Branch if the negative flag N is clear.

BMI Branch if the negative flag N is set.

BVC Branch if the overflow flag V is clear.

BVS Branch if the overflow flag V is set.

Unconditional Jumps and Returns

JMP Jump to a new address and continue program execution.

JSR Jump to a subroutine to continue execution.

RTS Return from a subroutine to the calling program.

BRK Break (jump) to execute the IRQ-type interrupt routine.

RTI Return from the IRQ-type interrupt routine.

Stack Operation Instructions

PHA Push the code in the accumulator onto the stack.

PLA Pull the code from the stack and place it in the accumulator.

PHP Push the code in the P register onto the stack.

PLP Pull the code from the stack and place it in the P register.

TXS Transfer the number in the X register to the stack pointer S.

TSX Transfer the number in the stack pointer S to the X register.

No Operation

NOP No operation takes place.
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Repeating ourselves, the microprocessor accepts instructions in the form

of eight-bit codes, not the mnemonics and descriptions given in Table 1-1.

Human beings, not the microprocessor, use mnemonics.

An instruction can also be described with a diagram. We have chosen to

describe the LDA and STA instructions in Figures 1-5 and 1-6. In the case of

the LDA instruction, an eight-bit code is transferred over the data bus from

memory to the 6510 microprocessor, using the ability of the 6510 to read, or

copy, an eight-bit code in memory. The LDA instruction is analogous to the

BASIC language PEEK instruction. In the case of the STA instruction, an eight-

bit code is transferred over the data bus from the 6510 microprocessor to

memory, using the ability of the 6510 to write an eight-bit code to memory.

The STA instruction is analogous to the BASIC language POKE instruction.

The eight-bit codes that make up an instruction are stored in sequential

memory locations. The addresses of these memory locations serve much the

same purpose as line numbers in a BASIC program. A machine-language pro

gram consists of an ordered set of instructions designed to accomplish a specific

objective. In running a machine-language program, the microprocessor reads,

in succession, the eight-bit codes that comprise the instructions to be executed,

and the microprocessor performs the desired operations in sequence.

It is possible, therefore, to distinguish between two kinds of information

that are stored in memory, programs and data. For example, if you are using

a word processing program, the word processing program itself occupies one

portion of memory, while the words you type on the keyboard are stored as

data in another portion of memory. In the area of memory devoted to the pro

gram, the microprocessor is busily engaged in reading and executing machine-
language instructions. The data it processes is, with some exceptions, stored

at another place in memory.

An example of an actual machine-language program should make all this

clear. Our program will add two numbers and store the result. First let us load

the program, then we will load the data, and then we will execute the pro

gram. Following that, we will briefly explain the program. You are now going

to load and execute your first machine-language program. We will use BASIC
POKE commands to store three instructions of a machine-language program

in memory. Although the POKE instruction uses decimal numbers, the BASIC

interpreter converts these decimal numbers into binary numbers in order to

store them in the memory location specified by the first number in the POKE

instruction. Perform the following POKE commands:

POKE 49152, 173

POKE 49153, 52
POKE 49154, 194

POKE 49155, 109

POKE 49156, 53

POKE 49157, 194

POKE 49158, 141

POKE 49159, 0

POKE 49160, 207 .

POKE 49161, 96



14 1 DThe Commodore 64 Microcomputer System

The machine-language program is now in memory. Do not be concerned with
the origin of the codes that you POKEed into memory. That mystery will be
solved in Chapter 2.

MICROCOMPUTER

MEMORY

SPACE

MICROCOMPUTER

DATA BUS

DBO

V r V V

DB1

DB2

DB3

DB4

DB5

DB6

DB7

i i i i i i i n
7 6 5 4 3 2 10

ACCUMULATOR

6510 MICROPROCESSOR

L ii it

J_L U
7 6 5 4 3 2 1

BIT NUMBERS

Figure 1-5. Diagram of the LDA instruction.
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Now let us POKE the data into memory. The data consists of the two
numbers to be added. Let us add two and three to get five. One addend goes
in location $C234 (49716) and the other in location $C235 (49717). Perform these
two commands:

POKE 49716, 2

POKE 49717, 3

MICROCOMPUTER

MEMORY

SPACE

i

MIC

DBO

)RO

DA

DB1

DB2

DB3

DB4

DB5

DB6

DB7

1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 10

ACCUMULATOR

6510 MICROPROCESSOR

COMF

TABL

^ j

3UTER

JS

Li
I I I I I

7 6 5 4 3 2 1

BIT NUMBERS

0

Figure 1-6. Diagram of the STA instruction.
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To execute this machine-language program, perform the BASIC command

SYS 49152

which directs BASIC to perform a machine-language program whose instruc

tions begin at the address $C000 (49152).

The machine-language program stores the answer in memory location

$CF00 (52992). After executing the program, perform the BASIC command

PRINT PEEK(52992)

The PEEK instruction reads a binary number in memory and converts it into

a decimal number. You should get an answer of five. (You will get six for an

answer if the 6510 still contained a "carry" from a previous addition. More

about that later.)

You have just stored and executed a machine-language program. The pur

pose of this exercise is to begin to acquaint you with the idea that machine-

language programs consist ofbinary codes stored in sequential memory loca

tions. Now let us describe this program in a little more detail.

The program adds an eight-bit number stored in the memory location whose

address is $C234 to an eight-bit number stored in the memory location whose

address is $C235, and it stores the sum of these numbers in the memory loca

tion whose address is $CF00. Using a read operation, the number in location

$C234 is first copied into the eight-bit register in the 6510 microprocessorwhere

all arithmetic operations take place. This eight-bit register is known as the

accumulator. An LDA instruction accomplishes this task (refer to Figure 1-5).

Next, the microprocessor must add the number just read to the number stored

in location $C235. AnADC instruction accomplishes this. TheADCinstruction

is analogous to the " + " operation in the BASIC language. Finally, the 6510

must use a write operation to store the sum in location $CF00. An STA in

struction performs this task, completing the program (refer to Figure 1-6).

The machine-language program that achieves this simple programming task

is shown in Table 1-2 in binary and hexadecimal. The decimal version was

given above in the series ofPOKE commands. The mnemonics for the instruc

tions are also given, to make the program more understandable. The three

instructions have been delineated by spaces for easy identification. Below the

program, we have given a simple example of the actual data that we used

when we executed the program. Study the machine-language program in

Table 1-2. Observe that each of the three instructions in this simple program

consists of three bytes. The first byte identifies the nature of the operation that

is going to take place. The second and third bytes give the address of the

memory location of the data. Notice that the least-significant eight bits of the

address are given first and the most-significant eight bits of the address are

given last. Although you may think this is awkward, there are good reasons

why the microprocessor was designed to work in this way.

It is important to realize that in addition to informing the microprocessor

what instruction is desired, the program must specify, by one means or

another, where the data is to be found. In the example just illustrated, each

instruction specifies the full 16-bit address of the memory location of the data.
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Table 1-2. A program to

Program

Memory

Address

(Hexadecimal)

$cooo

C001

C002

C006

C007

C008

Data

Memory

Address

(Hexadecimal)

$C234

$C235

$CF00

add two numbers.

Program

Memory

Contents

(Binary) (Hexadecimal)

10101101 $AD

00110100 34

10100010 C2

00111101 6D

00110101 35

10100010 C2

10001101 8D

00000000 00

10101111 CF

Data

Memory

Contents

(Binary) (Hexadecimal)

00000010 $02

00000011 $03

00000101 $05

Assembly-

Language

Mnemonic

LDA

ADC

STA

(after execution)

Here is how the program in Table 1-2 is executed. The 6510 begins byreading

the first byte of the LDA instruction. After reading this byte, which takes less

than one microsecond, it interprets this eight-bit code while it is reading the

next program byte. Once it interprets the first code, it knows that the second

and third bytes of the LDA instruction are the address of the data it is to read

from memory. It takes three dock cydes of the microcomputer system clock

to read all three bytes of the instruction. During the next dock cyde, it reads

the byte of data stored at location $C234. Thus, the entire three-byte LDA

instruction takes four dock cycles. Three dock cycles were used to read the

instruction, and the fourth was used to carry out the intent of the instruction.

Next, the microcomputer reads and interprets the first byte of the add

(ADG) instruction. Having interpreted the eight-bit code, it knows that

the next two program bytes are the address of the memorylocation of the

number it is to add to the number in the accumulator. It reads all three

bytes of the instruction in three dock cycles, one for each byte. During

the fourth dock cyde, it adds the number in location $C235 to the number

in the accumulator and replaces the number in the accumulator with this

sum. The ADC instruction also takes four dock cycles.
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Finally, the microprocessor reads and interprets the first byte of the STA

instruction. The eight-bit code informs it that it must write the contents of the

accumulator to the address given in the next two program bytes. This takes

one clock cycle. During the next two clock cycles, it reads both bytes of the

address of the destination of the number in the accumulator. Duringthe fourth

and final dock cycle, it stores (writes a copy of) the number in the accumulator

into location $CF00, completing the program in 12 clock cycles, or just under

12 microseconds.

Admittedly this is a simple program, and we have taken the liberty of

slightly oversimplifying the operation of the microprocessor. By now you

should have some inkling of the nature of machine language and the sequence

of events associated with the execution of a machine-language program. Also,

you are now in an excellent position to proceed to the next section, where we

will introduce some of the other registers in the 6510 microprocessor. Further

more, you are also almost ready to begin programming. In the next few

chapters we will describe much more efficient ways of creating, storing, and

executing machine-language programs.

V. An Overview of the 6510 Registers

The registers in the 6510 microprocessor that are of interest to the assembly-

language programmer are shown in Figure 1-7. The bit numbers are identified

at the top of the accumulator and the program counter. We will briefly discuss

each of these registers. Think of this as a global view. When you look at a globe

you do not see or understand many details. These will become obvious only

with more study and the use of the registers in programming examples.

The Accumulator—A

You have already been introduced to the accumulator. It is used by the

assembly-language programmer more often than any other register. When

performing an arithmetic operation, such as addition, two numbers called

operands are combined to form the sum. In performing arithmetic or logical

operations with the 6510, one of the two operands mustbe in the accumulator;

the other operand will be in memory. The result of the operation is always

placed in the accumulator.

Recall that when programming with BASIC you combined variables in

various arithmetic operations. In assembly-language programming, one of

the variables is always A, the symbol for the number in the accumulator. The

other variable will be M, a symbol for a number in some memory location.

In addition to being used for arithmetic and logical operations, the accumulator

maybe used for data transfers to and from memoryby means of the LDA and

STA instructions described in Table 1-1 and Figures 1-5 and 1-6.
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REGISTER NAME
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ACCUMULATOR A

INDEX REGISTER X

INDEX REGISTER Y

PROGRAM COUNTER PC

STATUS REGISTER P

STACK POINTERS

DATA DIRECTION

REGISTER DDR

INPUT/OUTPUT PORT

IOP

Figure 1-7. Register structure of the 6510 microprocessor.

The X Index Register—X

In the BASIC language, the programming structure known as a loop is

frequently implemented with a FOR...NEXT... instruction. Some variable

serves as a loop counter. The variable is incremented by one until it reaches

a certain value and then the program exits the loop. In assembly language,

the number in the X register will frequently serve as a loop counter.

The BASIC language allows the use of array variables, of the form VAR(I),

where I is called a subscript or index. When programming in assembly

language, you will frequently use the number in the X register as a subscript-,

or index. That is why it is called an index register.

The X register can also be used for transferring eight-bit codes to and from
memory with the LDX and STX instructions (refer to Table 1-1).

The Y Index Register—Y

The Y register is used in the same way as the X register; that is, used as a
loop counter and as a subscript or index. The Y register can also be used for
transferring data with the LDY and STY instructions (refer to Table 1-1).
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The Program Counter—PC

A computer program written in any language is an ordered set of instruc

tions. The BASIC language uses line numbers to order the instructions; how

are the instructions ordered in machine-language and assembly-language pro

grams? We have already hinted at the answer. The instructions are stored one

after the other in memory and are ordered by the addresses of the memory loca

tions that the program occupies.

The program counter is the register in the 6510 microprocessor that keeps

track of the address of the next program byte to be read by the 6510. Since

addresses are 16-bit numbers, the program counter is a 16-bit register. If you

could watch the program counter during the execution of a program, the pro

gram counter would appear to count, except whenbranches or jumps occur:

then it would appear to jump forward or backward in its counting.

The Processor Status Register—P

Refer again to Figure 1-7. Notice that the P register is the only one that has

specific bits identified. Each bit (with the exception of bit five, which is not

used) is called a flag or condition code. These flags are modified, set or cleared,

by operations and events that take place during program execution. A flag

is set if it has the value one, it is clear if it has the value zero. For example,

if the addition of two eight-bit numbers produces a carry, then the carry flag,

C, will be set; otherwise, it will be cleared. If, for example, an AND instruc

tion gives a result of Tjero, then the zero flag, Z, is set; otherwise, it is cleared.

So-called branch instructions are used to test the flag conditions and force the

program to branch to another instruction, very similar to the IF.. .THEN... in

struction in BASIC. The flags will be discussed as the need arises in subsequent

chapters.

The Stack Pointer—S

This register is used to point to the locations in memory whose addresses

lie from $0100 to $01FF, called the stack. The number in the stack pointer iden

tifies the least-significant byte ($00 - $FF) of the address. The most-significant
byte of the address is understood to be $01. That is why the "one" appears in

bit eight of the stack pointer (refer to Figure 1-7). The stack is used to store

information when subroutines and interrupts are executed. It will be described
in more detail in Chapter 9.

The Input/Output Port Registers—DDR and IOP

The 6510 microprocessor is a member of the 6502 family of microprocessors.
The 6510 differs from some of the other family members because it has an
onboard input/output port. This port can input or output up to eight bits of
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information. The address of the I/O port is $0001. Its data-direction register

is located at $0000. The number in the DDR (data-direction register) simply

determines whether a particular bit of the port will be used to input informa

tion or to output information. There is a one-to-one correspondence between

the bits in the DDR and the bits in the IOP. A one in a particular bit in the

DDR makes the corresponding bit in the IOP an output bit. A zero in a par

ticular bit in the DDR makes the corresponding bit in the IOP an input bit. The

Commodore 64 system uses this I/O port to switch ROM in and out of the

memory space and to perform cassette read and write operations. It is not con

sidered to be a user port, but in Chapter 11 we will illustrate how it is used

to switch banks of memory in and out of active use.

This completes our overview of the structure and operation of the Com

modore 64 microcomputer system. You should have a much greater apprecia

tion ofhow it works. This background will become more and more useful as

you begin programming in assembly language, a language in which the pro

grammer is more intimately associated with the operation of the micro

computer than any other language. Clearly, to use BASIC you did not need

to know anything about the registers in the microprocessor, but this

knowledge is indispensable for assembly-language programming.

VI. Additional Reading

Since the 6510 microprocessor is a member of the 6502 family of micro

processors, most of the literature associated with the 6502 is useful reading

material for Commodore 64 assembly-language programmers. We recom

mend the following books:

Commodore 64 Programmer's Reference Guide (PRG). Commodore Business Machines;

Indianapolis, Indiana: Howard W. Sams & Co., Inc., 1982. (Indispensable.)

6502 Assembly Language Programming. Lance A. Leventhal. Berkeley, California:

Osborne/McGraw-Hill, Inc., 1979. (Excellent reference for assembly-langauge

programmers with some experience.)

6502 Software Design.Leo J. Scanlon. Indianapolis, Indiana: HowardW. Sams & Co.,

Inc., 1980. (Excellent source for a variety of 6502 assembly-language routines.)

6502 Software Gourmet Guide & Cookbook. Robert Findley. Elmwood, Connecticut:

Scelbi Publications, 1979. (Contains a number of valuable 6502 programming

examples, including floating-point arithmetic routines.)

Programming & Interfacing the 6502, With Experiments. Marvin L. De Jong.

Indianapolis, Indiana: Howard W. Sams & Co., Inc., 1980. (An introductory

text to assembly-language programming and microcomputer hardware.)

VII. Summary

The Commodore 64 microcomputer consists of a 6510 microprocessor,

ROM, R/W memory, and various I/O devices. These are interconnected by

the address bus, the data bus, and the control bus. Each of the 65,536 memory
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locations is identified by its address. Each memory location stores eight bits

of information, called an eight-bit code, an eight-bit number, or a byte.

Memory is used to store both data and machine-language programs. The

microprocessor can read a code stored in memory, operate on it, or store

(write) a code in memoryunder the direction of a machine-language program.

A program is an ordered set of instructions stored sequentially in memory.

Instructions consist of eight-bit codes that the microprocessor reads, inter

prets, and executes. In order to be understood byhumanbeings, the instruc

tions are described by a mnemonic and an English language description. The

instruction set of the 6510 consists of 56 different instructions. Six registers

inside the 6510 are involved in the execution of these instructions. These

registers are the accumulator, X register, Y register, program counter, pro

cessor status register, and the stack pointer.



Writing, Assembling, and

Executing Programs

I. Introduction

In addition to being challenging and entertaining, learning to program your

programming with assembly language is simply an easy way to write

machine-language programs. Almost every machine-language program is

written using assembly language. For certain applications such as animated

graphics, music synthesis, and speech recognition, the high execution speed

associated with machine-language programs is essential. Programs designed

to interface the microcomputer to I/O devices such as printers, modems, and

laboratory instruments are usually written using assembly language. Ob

viously, both the operating system and the BASIC interpreter were written

using assembly language. These assembly-language programs were then

translated into machine language before being stored in the ROM of the Com

modore 64.

To summarize, assembly language is used whenever speed is important,

but it is also used in many other programs, such as word processors and

spread sheets.

II. Microcomputer Instructions

A microcomputer machine-language program is an ordered set of instruc

tions. An instruction consists of one, two, or three eight-bit codes stored in

memory, which when read by the microprocessor will cause it to carry out

one of the 56 operations listed in Table 1-1.

The first eight-bit code of an instruction determines which of the 56 specific

operations in the instruction set will be executed. This eight-bit code is called

the operation code or, more concisely, the op code of the instruction. Writing

23
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eight-bit codes is lengthy, and you seldom see the binary representation of

the op code. It is more concise to express these codes in hexadecimal. Hex

adecimal, a numbering system with a base of 16, is described in more detail

in Appendix A. The hexadecimal representations of the op codes are listed

in Table 2-1, which summarizes the 6510 instruction set.

As an aid in programming, each instruction is also given a three-letter

mnemonic that suggests what operation is involved. These instruction

mnemonics were listed in Table 1-1 and are given again in Table 2-1. Before

very long you will have all 56 mnemonics memorized.

In addition to the English-language description given for each instruc

tion in Table 1-2, we can give the logical description of the instruction. The

logical description is simply a symbolic (and, therefore, concise) descrip

tion of the instruction. The logical descriptions of each instruction are given

in the second column of Table 2-1. In Example 2-1 we summarize the four

ways of identifying an instruction for three different instructions, LDA,

ADC, andSTA.

Example 2-1. Illustrating the Four Ways to Identify an Instruction

Mnemonic Logical Expression Op Code English Description

LDA M—A $AD Copy the code in memory

location M into the ac

cumulator A.

ADC A + M + C-A $8D Add the number in A, the

number in memory loca

tion M, and the contents of

the carry flag. Store the

sum in A.

STA A-M $6D Write the code in A to

memory location M.

Assembly-language programs are written using mnemonics. The process of

translating mnemonics and other parts of the assembly-language program to

machine language is called assembling the program. An assembler is a computer

program that performs the translation for you. Rjr short programs, hand assembly

using pencil, paper, and the instruction set summary in Table 2-1 is perfectly

suitable. In my opinion, you can learn a great deal about assembly language z(^f/iowt

the added expense of an assembler. It is also more difficult to try to learn assembly

language while trying to understand the idiosyiicrasies of the assembler. Although

other experienced programmers may disagree, my advice is to wait to purchase

an assembler until you have mastered the first half of this book. Later, when you

begin to write long programs, you will want to purchase an assembler. We will

mention more about assemblers in Chapter 3.
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III. Addressing Modes

As stated earlier, an instruction can consist of up to three eight-bit codes.

We have described the function of the first eight-bit code but we have not yet

accounted for the other bytes of the instruction. Refer once again to the in

struction set summarized in Table 2-1. The instruction mnemonic is found

in the first column and the logical description is found in the second column.

The next 13 columns contain column headings such as "IMMEDIATE," "AB

SOLUTE," "ZERO PAGE," and so on, each of which is a different addressing

mode. The addressing mode is related to how the microprocessor locates (in

memory) the number involved in the instruction. The "number involved"

in the instruction is usually called the operand. The operand is the eight-bit

code or number that is the object of the instruction. (Just as every preposition

in English grammar must have an object to which it refers, an assembly-

language instruction has an object, in this case a number rather than a noun,

to which it refers.)

Some simple examples will suffice to illustrate the concept of an

operand. In the case of an LDA instruction, the operand is the number

copied from memory into the accumulator. In the case of the ADC instruc

tion, the operand is the number that is added to the number in the ac

cumulator. In the case of the STA instruction, the operand is the number

that is transferred from the accumulator to memory. Notice that what hap

pens to the operand depends on the instruction. Sometimes it is read

(LDA), sometimes it is stored (STA), sometimes it is one of the two

numbers involved in an arithmetic operation (ADC Or SBC), sometimes

it is one of the two codes involved in a logical operation (AND, ORA,

EOR), sometimes it is shifted (ASL, LSR), and so forth.

Before describing several of the addressing modes, we must make two

simple definitions. Each 16-bit address is composed of two bytes. The least-

significant byte of the address, which identifies address bits AD0-AD7, is

called the ADL (address low) of the address. The most-significant byte of the

address, which identifies address bits AD8-AD15, is called theADH (address

high) of the address. Sometimes the ADH is called the high byte of the ad

dress and the ADL is called the low byte ofthe address. Example 2-2 illustrates

these ideas.

Example 2-2. Identifying the ADL and ADH of an Address

Identify the ADL and the ADH of the address $3C1A.

Solution: The ADL is $1A and the ADH is $3C. The least-significant byte

of the address is represented by the last two hexadecimal digits, therefore they

are the ADL. The most-significant byte of the address is represented by the

first two hexadecimal digits, therefore they are the ADH.
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Table 2-1. The 6510 instruction set summary.

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

INSTRUCTIONS

MNEMONIC

ADC

AND

A S L

BCC

B C S

B EO

B 1 T

B M 1

B N E

B P L

B R K

B VC

B V S

CLC

CLD

C L 1

C L V

CMP

C P X

C P Y

DEC

D E X

D E Y

E 0 R

INC

1 N X

1 N Y

J M P

J S R

L D A

OPERATION

A ♦ M + C-» A (4)(1)

AAM-»A (1)

C-J; 6I-0

BRANCH ON C = 0 (2)

BRANCH ON C = 1 (2)

BRANCH ON Z = 1 (2)

AAM

BRANCH ON N = 1 (2)

BRANCH ON Z = 0 (2)

BRANCH ON N = 0 (2)

BREAK

BRANCH ON V = 0 (2)

BRANCH ON V = 1 (2)

0-C

0 -D

0-I

0-V

A - M

X - M

Y - M

M - 1 -M

X - 1 -X

Y - 1 - Y

AVM-A (1)

M ♦ 1 -M

X + 1 -X

Y + 1 - Y

JUMP TO NEW LOC

JUMPSUB

M-A (1)

IMMEOIATE

OP

69

29

C9

EO

CO

49

A9

n

2

2

2

2

2

2

2

ft

2

2

2

2

2

2-

2

ABSOLUTE

OP

6D

2D

0E

2C

CD

EC

CC

CE

4D

EE

4C

20

AD

n

4

4

6

4

4

4

4

6

4

6

3

6

4

ft

3

3

3

3

3

3

3

3

3

3

3

3

3

ZERO PAGE

OP

65

25

06

24

C5

E4

C4

C6

45

E6

A5

n

3

3

5

3

3

3

3

5

3

5

3

ft

2

2

2

2

2

2

2

2

2

2

2

ACCUM

OP

OA

n

2

ft

1

IMPLIED

OP

00

18

D8

58

B8

CA

88

E8

C8

n

7

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

(IND.

OP

61

21

C1

41

A1

n

6

6

6

6

6

K)

ft

2

2

2

2

2

(INO).

OP

71

31.

D1

51

B1

n

5

5

5

5

5

Y

ft

2

2

2

2

2
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Table 2-1. The 6510 instruction set summary (continued).

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

Z PAGE, X

OP

75

35

16

D5

D6

55

F6

B5

n

4

4

6

4

6

4

6

4

#

2

2

2

2

2

2

2

2

ABS X

OP

7D

3D

1E

DD

DE

5D

FE

BD

n

4

7

4

7

4

7

4

*

3

3

3

3

3

3

3

3

ABS. Y

OP

79

39

D9

59

B9

n

4

4

4

4

•

3

3

3

3

3

RELATIVE

OP

90

BO

FO

30

DO

TO

50

70

n

2

2

2

2

2

2

2

CMCMCMCM

INDIRECT

OP

6C

n

5 3

Z PAGE. Y

OP n

PROCESSOR STATUS

CODES

7 6 5 4 3 2 10

N V • B D I Z C

N V . . . . Z C

..... 0 * *

.0 »

N Z C

N Z

N Z •

MNEMONIC

ADC

AN D

A S L

BCC

BCS

B E 0

B I T

B M I

B N E

B P L

B R K

B V C

B V S

CLC

C L D

C L I

C L V

CMP

C P X

C P Y

DEC

D E X

D E Y

E 0 R

INC

I N X

I N Y

JMP

J S R

L D A
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Table 2-1. The 6510 instruction set summary (continued).

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

INSTRUCTIONS

MNEMONIC

L D X

L D Y

L S R

N 0 P

0 R A

P H A

PHP

P L A

P L P

R 0 L

R 0 R

R T 1

RTS

SBC

SEC

SED

S E 1

S T A

S T X

STY

TAX

T A Y

T S X

T X A

T X S

T Y A

OPERATION

M-X (1)

M-Y (1)

o-mnnhc

NO OPERATION

AVM-A

A-Ms S - 1 -S

P-Ms S - 1 -S

S + 1 -S Ms-A

S ♦ 1 - S Ms - P

U|, UIHCM

RTRNINT

RTRNSUB

A - M - C*-A (1)

1-C

1 -D

1 -I

A - M

X-*M

Y-M

A-X

A-Y

s-x

X-A

x-s

Y-A

IMMEOIATE

OP

A2

A0

09

E9

n

2

2

2

2

ft

2

2

2

2

ABSOLUTE

OP

AE

AC

4E

0D

2E

6E

ED

8D

8E

8C

n

4

4

6

4

6

6

4

4

4

4

#

3

3

3

3

3

3

3

3

3

3

ZERO PAGE

OP

A6

A4

46

05

26

66

E5

85

86

84

n

3

3

5

3

5

5

3

3

3

3

ft

2

2

2

2

2

2

2

2

2

2

ACCUM

OP

4A

2A

6A

n

2

2

2

ft

1

1

1

IMPLIED

OP

EA

48

08

68

28

40

60

38

F8

78

AA

A8

BA

8A

9A

98

(1) ADD 1 to N IF PAGE BOUNDARY IS CROSSED

(2) ADD1TON IF BRANCH OCCURS TO SAME PAGE

ADD 2 TO N IF BRANCH OCCURS TO DIFFERENT PAGE

(3) CARRY NOT = BORROW

(4) IF IN DECIMAL MODE. Z FLAG IS INVALID

ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT

n

2

3

3

4

4

6

6

2

2

2

2

2

2

2

2

2

ft

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(IND.

OP

01

E1

81

n

6

6

6

I)

ft

2

2

2

(IND).

OP

11

F1

91

n

5

5

6

1

ft

2

2

2
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Table 2-1. The 6510 instruction set summary (continued).

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

Z PAGE.X ABS.X ABS. Y RELATIVE
PROCESSOR STATUS

INDIRECT 2 PAGE. Y C00ES

OP OP OP OP OP OP
7 6 5 4 3

N V • B DHi MNEMONIC

1D

BE

19

B6 2 •

Z •

Z C

L D X

L D Y

L S R

N O P

O R A

36

(RESTORED)

3E Z C

P H A

PHP

P L A

P L P

ROL

76

F5

7E

FD

N • • • • • Z C

.RESTORED)

F9 N V Z (3)

• 1

ROR

R T I

R T S

SBC

SEC

S E D

95

94

9D 99

96

S E I

S T A

S T X

STY

TAX

N

T A Y

T S X

T X A

T X S

T Y A

X INDEX X

Y INDEX Y

A ACCUMULATOR

M MEMORY PER EFFECTIVE ADDRESS

Ms MEMORY PER STACK POINTER

+ ADD

SUBTRACT

A AND

V OR

V EXCLUSIVE OR

MEMORY BIT 7

MEMORY BIT 6

NO. CYCLES

NO. BYTES
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Another definition that must be made before proceeding is related to the

special significance that the 6510 gives to the block of memorylocations start

ing with address $0000 and ending with address $00FF. This block of memory

locations is called page zero of memory, or zero page. Of course, the ADH of

any memory location in page zero is $00.

Now we are ready to proceed with our study of addressing modes. We

begin by describing three of the simplest addressing modes:

• In the absolute addressing mode, the second and third bytes of the instruction

are the ADL and ADH, respectively, of the address of the operand.

• In the zero-page addressing mode, the second byte of the instruction is the ADL

of the address of the operand. The 6510 automatically makes the ADH = $00.

• In the immediate addressing mode, the operand is the second byte of the in

struction. In this case, the operand actually resides in the program.

Notice from the instruction set summarized in Table 2-1 that each address

ing mode has a unique op code. Example 2-3 illustrates these ideas.

Example 2-3. Use of the LDA Instruction in Three Addressing
Modes

Illustrate an LDA instruction for each of the three addressing modes just

described.

Solution: Assume the operand is in location $1234. Then the complete LDA

instruction in the absolute addressing mode is, in order, AD 34 12. If the

operand is in page zero of memory, then the zero-page addressing mode can

be used. In this case, the LDA instruction consists of two bytes. Assume the

operand is in location $003F. Then the LDA instruction is, in order, A5 3F.

In the immediate addressing mode, the second byte of the instruction is the

operand. Suppose we want to load the number $01 into the accumulator. The

LDA instruction is, in order, A9 01.

In executing an instruction, the 6510 microprocessor first reads the op code

of the instruction. The microprocessor interprets this op code to determine

the nature of the operation and the addressing mode. Having interpreted the

op code, the microprocessor knows how many bytes are in the instruction

and it knows the significance of those bytes, that is whether they are a full

address, the low-order byte of an address in page zero of memory, or a byte

of data, as in the case of the immediate addressing mode. Thus, if the first

byte of an instruction is $AD, the 6510 knows that an LDA instruction is to

be executed in the absolute addressing mode and that the next two bytes are

the address of the operand.

To repeat, the first byte of any instruction is always the op code. The remain

ing bytes, if any, are used to determine the address of the memory location of

the data to be operated on by the microprocessor. The op code contains suffi

cient information to identify both the instruction and the addressing mode.
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(A detailed study of the op codes in Table 2-1 will, in fact, reveal which bits

in the op code identify the addressing mode and which bits identify the type

of instruction. It is not a coincidence that all three instructions illustrated in

Example 2-1 have op codes that end in "D," since all three used the absolute

addressing mode. Nor is it a coincidence that the LDA op codes all begin with

an "A" or a "B." You need not be concerned, however, with how the

engineers who designed the 6510 give it the ability to interpret the bit pat

terns in op codes.)

The number of bytes in each instruction is also specified in the instruction

set summary in Table 2-1. At the intersection of the row containing the in

struction mnemonic and the column containing the addressing mode you will

find the op code, the number of bytes in the instruction (n column), and the

number of clock cycles (# column) it takes the 6510 microprocessor to execute

the instruction.

Notice that some instructions, such as TAX, TXA, PHA, require only one

byte. How can the microprocessor find the operand with no information about

its location? From the English-language description of the TAX instruction

you know its execution will transfer the code from the accumulator to the X

register. Both the source and the destination of the operand are implied by the

instruction itself, and no additional information regarding the location of the

operand is required. This form of addressing is called the implied addressing

mode. An instruction that uses the implied addressing mode requires only a

single byte, the op code.

Other addressing modes will be covered in subsequent chapters.

IV The Components and Form of an

Assembly-Language Program

To understand an assembly-language program you have to see one. Sup

pose our program objective is to place the number $17 in memory location

$D018, and the program is to be stored in memory starting at location $C000.

This is clearly a rather simple objective that can be achieved with a simple pro

gram. An assembly-language program that will accomplish this task is given

in Example 2-4.

Example 2-4. A Simple Assembly-Language Program

Comments

;Load the accumulator with the

; number $17.

; Store the number in the

; location symbolized by VIC18.

Label

BEGIN

END

Mnemonic

LDA

STA

Operand

Field

#$17

VIC18
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Refer to Example 2-4 and note the four columns of the program: label, mnemonic,

operand field, and comments. The label is a name for the address of the first byte of

the instruction. Many instructions will not have labels, but we have chosen the

label BEGIN for the start of our program and the label END for the last instruction.

The second column contains one of the 56 mnemonics found in the instruction set.

The third column is the operand field:

• It is empty when the implied addressing mode is used.

• It contains the operand when the immediate addressing mode is used. The im

mediate mode will use the "#" symbol.

• It contains a symbol when the zero page or absolute addressing modes are used.

• It contains a label when a branch, JMP, or JSR instruction is involved. Two of these

cases are illustrated in Example 2-4. Others will be illustrated in subsequent chapters.

We intend to load the accumulator with $17, using the LDA instruction in the

immediate addressing mode. The operand is, therefore, in the program itself, and

assembly-language programming tradition uses the "#" symbol to indicate the

immediate addressing mode. The STA instruction uses absolute addressing since

the memory location is not in zero page. VIC18 is a symbol for the location $D018

where we wish to store the number in the accumulator. We chose the symbol
"VIC18" because $D018 is the address of the $18th register of the 6567VIC H chip,

which we will refer to as the 6567 VIC, or more simply, the VIC.

The fourth column contains comments intended to inform the reader of the pur

pose of the instruction. You do not ordinarily describe the instruction itself as we

have done in Example 2-4—the instruction mnemonic should do that. However,

since you are in the early stages of learning assembly-language programming,

some redundancy may help you to understand the instruction.

The program in Example 2-4 is, indeed, an assembly language program. It is

of little use, however, unless it is translated into machine language, a process called

assembling the program. This program can easily be assembled by hand using

the instruction set summarized in Table 2-1. Rather than translating the assembly

language version into binary numbers or machine code, it will be more convenient

for us to represent these codes in hexadecimal. The traditicaial form of an assembly-

language program includes the hexadecimal version, usually placed to the left of

the assembly-language program.

Carefully study Example 2-5. It is the same program listed in Example 2-4, but

the hexadecimal codes have been added and the comments have been modified.

The hexadecimal translation of the "LDA #$17" assembly-language instruction is

A917

since $A9 is the op code for the LDA instruction in its immediate addressing mode,

and $17 is the operand of this instruction. Since the first instruction begins at loca

tion $C000, we specify this address to the left of the instruction. Thus, the entire

"LDA #$17" instruction translates into

C000A917

Refer again to Example 2-5.
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Now we will assemble (translate into hexadecimal code) the second instruction.

Recall that we specified that "VIC18" symbolizes the address $D018. Thus, the

machine-language translation of the STA VIC18 instruction is

8D 18 D0

since $8D is the op code for the STA. instruction in this addressing mode. The "18"

and the "DO" are the ADL and the ADH of the address $D018. In the machine-

language translation, the address must appear with the least-significant byte of

the address first, and the most-significant byte second. The first instruction of

our program occupied memory locations with addresses $C000 and $C001. Thus,

this second instruction begins at the location whose address is $C002, and it is

written

C002 8D 18 D0

Study the second line of the program listed in Example 2-5. We have now hand-

assembled the program given in Example 2-4.

Example 2-5. Completed Version of the Program in Example 2-4

Operand

Address Instruction Label Mnemonic Field Comments

A917 BEGIN LDA #$17 ; "LDA" in immediate

; addressing mode.

$C002 8D18D0 END STA VIC18 ; "STA" in absolute

; addressing mode.

Notice that in Example 2-5 the address given on each line corresponds to the

memory location that contains the op code of the instruction. The op code $A9

is in location $C0O0, while the number $17 is in the next location, $C001. Likewise,

$8D is in location $C002, $18 is in location $C003, and the last byte of the pro

gram, $D0, is in location $C004. Notice that all the lytes erf an instruction are given

on a single line. Thus, each line of the program will have one, two, or three bytes,

depending on the addressing mode of the instruction.

Refer once more to Example 2-5. The assembly-language version of the program

is frequently called the source program or source code. The sequence of dght-bit

codes that make up the machine-language version of the program is called the

object program or object code.

Although it is quite simple to assemble short programs with pencil and paper,

for longer programs it is more convenient to use a computer program called an

assembler. We will describe the use of an assembler in the next chapter. The pro

grams in this book will all be assembled with an assembler, and the printed out

put will be photocopied for the book. Example 2-6 illustrates the output of our

assembler when the program-in Example 2-4 was assembled. Example 2-6 should

be compared with Example 2-5, the hand-assembled version.
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Example 2-6. Assembled Version of Example 2-4

10 BEGIN LDA #$17 ;LOAD A WITH THE NUMBER $17. C000 A9 17

11 END STA VIC18 ;STORE IT IN LOCATION VIC18. C002 8D 18 DO

Notice that in Example 2-6 the hexadecimal listing is placed to the right of the

assembly-language version. Most assemblers place the hexadecimal listing on

the left. Although ourformat represents a departure from tradition, it will pose

no problem. In fact, for instructional purposes it may be an advantage: you can

focus your attention on the left and neglect the hexadecimal codes on the right

until you wish to load these codes into memory. In reference to the hexadecimal

listing, also notice that the "$" prefix is dropped. Observe that each instruc

tion has a line number on the extreme left of the listing. Line numbers will be

useful to identify certain instructions when they are discussed within the text

of the book. Finally, observe that the column headings are dropped.

One way to load the program in Example 2-6 into memory and execute it

is to convert the instruction codes to decimal, POKE the codes into memory

usingBASIC, and then execute the program as a subroutine using the BASIC

SYS instruction. To do that, we must end the machine-language program with

a return from subroutine (RTS) instruction whose op code is $60 (decimal 96).

The program in Example 2-7 illustrates this somewhat awkward way of

loading and running the machine-language program given in Example 2-6.

Example 2-7. A BASIC Program to Load and Run the Program

in Example 2-6

5 REM EXAMPLE 2-7

10 RESTORE : ADDR=49152

20 FOR 1=0 TO 5 : READ CODE

30 POKE ADDR*+ I,CODE : NEXT
40 DATA 169,23,141,24,208,96

50 SYS 49152

60 END

The program in Example 2-7 READs (line 20) the machine-language codes as

DATA (line 40) andPOKEs these codes into memory (line 30) starting at the loca

tion whose address is 49152 ($C000). The SYS 49152 command on line 50 causes

i to be executed, and control returns to the BASIC

program in Example 2-7. What happens? Do the

rom uppercase to lowercase? If so, you have suc

cessfully assembled and executed your first assembly-language program.

V. Loading and Executing Simple Programs

By now you realize that some tools to write, edit, assemble, load, and ex

ecute programs would be desirable. The program in Example 2-7 is an

awkward way to load and execute a program. It required the translation of

all hexadecimal codes into decimal for the DATA statement on line 40.
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The most efficient approach to writing assembly-language programs is to

use a software package called an editor/assembler. The editor allows you to write

and edit assembly-language programs. The assembly-language program can

then be saved on a cassette tape or, preferably, a disk. The assembler reads

the assembly-language program and converts it to eight-bit binary codes that

can also be saved on tape or disk. In its binary form, the program can be read

and executed by the computer. The assembler also prints the machine-

language version in hexadecimal to make it easy for human beings to read.

In addition, some editor/assemblers come with a monitor program. This is

simply a program that allows you to read hexadecimal codes from any loca

tion in memory, enter hexadecimal numbers into memory, execute machine-

language programs from the monitor, and perform a number of other tasks.

Acquiring an editor/assembler can be expensive, and to use the editor/

assembler you must learn its commands and directives, which can be time con

suming. Since you will want to try some of the programs listed in the next several

chapters and some of your own programs without waiting to purchase an

editor/assembler, we will provide some simple tools to allow you to proceed.

You can easily assemble programs using pencil and paper. A programming

form similar to the one in Figure 2-1 is useful. Beginby entering the assembly-

language program starting in the label column and ending in the comments

INSTRUCTION

ADDRESS B1 B2 B3 LABEL MNEMONIC OPERAND COMMENTS

dp

n 90&S CJU^c -ufpe/ com. teJk»<l

to Uw6/ uue. [&UxM.

Figure 2-1. An assembly-language programming form with the program in

Example 2-6 included.
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column. Next, use the instruction set summarized in Table 2-1 to convert the

instructions into hexadecimal codes and enter them in the left-hand columns.

We have illustrated the code for the program in Example 2-6, and we have

included an RTS instruction at the end. The RTS instruction ensures that the

machine-language program will return to the BASIC calling program.

To load and execute machine-language programs, a BASIC program that

accepts hexadecimal codes from the keyboard and POKEs them into memory

is given in Example 2-8. During the next few chapters this will be a very useful

program, so load it into memory and then save it on tape or disk using a

SAVE "EXAMPLE 2-8"

command for tape storage and a

SAVE " @0: EXAMPLE 2-8 " , 8

command for disk storage.

Example 2-8. A Program to POKE Hex Codes Into Memory

5 REM EXAMPLE 2-8

10 PRINT "INPUT THE ADDRESS IN 4 HEX DIGITS."

20 GOSUB100:ADDR=NUM:K=0

30 PRINT "INPUT THE PROGRAM CODES IN HEXADECIMAL."

50 GOSUB 100

60 IF NUM = 96 THEN 80

70 POKE ADDR + K, NUM : PRINT X$,NUM : K = K+l

75 PRINT ADDR+K-1,K-1,NUM:GOTO 50

80 POKE ADDR + K,96

90 PRINT ADDR+K,K,96 : END

100 NUM = 0 : INPUT X$ : I = LEN(X$)

110 FOR J = 1 TO I

120 A$ = MID$(X$,J,1) : Z = ASC(A$)

130 IF Z > 64 THEN Z = Z - 55

140 IF Z > 15 THEN Z = Z - 48

150 NUM = NUM + Z*16T(I - J):NEXT

160 RETURN

RUN the program in Example 2-8. Begin by entering the address of the

memory location where your program starts. This will frequently be $C000.

Then enter the hexadecimal program codes from your assembled program

on the form shown in Figure 2-1. The program in Example 2-8 automatically

converts them to decimal for the POKE instruction and stores them in memory

starting at the location you specify. The block of memory starting at $C000

(49152) is an ideal place to locate machine-language programs.

The last code entered should be the RTS op code $60. Remember that a

machine-language program called from BASIC with a SYS command must

end with an RTS instruction. Entering the $60 op code will conclude the

program.

To run the machine-language program enter the SYS xxxx command, where

xxxx is the starting address, in decimal, of your machine-language program.

Suppose you want to load and execute the program in Example 2-6. Begin

by loading and running the program in Example 2-8. First enter the starting

address of the machine-language program, $C000. Then you will enter each
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hexadecimal code in Example 2-6 in the order A917 8D18 DO, and conclude

by entering 60, the RTS op code. Press RETURN after each of the six hex

adecimal codes. When finished, type SYS 49152 and the letters on the screen

will change from uppercase to lowercase when the machine-language pro

gram is executed. Try it.

We conclude this section with several additional programs that will be useful

to you. The program in Example 2-9 prints the hexadecimal codes found in

any block of memory. You can use this program to see whether you have cor

rectly entered the hexadecimal codes of a machine-language program. The

starting and ending address of the block of memory you wish to examine are

entered in hexadecimal. The program then prints the code in each memory

location as two hexadecimal digits. The output is formatted to give 16 columns.

See Table 4-5 for an example of the output.

Example 2-9. A Program to Print the Hexadecimal Codes in

a Block of Memory

5 REM EXAMPLE 2-9

10 PRINT "INPUT THE BEGINNING ADDRESS IN HEX."

20 GOSUB 100:Al = NUM:K=0

30 PRINT "INPUT THE ENDING ADDRESS IN HEX."

40 GOSUB 100:A2 = NUM:K=0

50 GOTO 200

100 NUM=0:INPUT X$:I=LEN(X$)

110 FOR J=l TO I

120 A$=MID$(X$,J,1):Z=ASC(A$)

130 IF Z>64 THEN Z=Z-55

140 IF Z>15 THEN Z=Z-48

150 NUM=NUM+Z*16T(I-J):NEXT
160 RETURN

200 OPEN 1,4

210 J=0

220 FOR I=A1 TO A2

230 Y=PEEK(I)

240 X=INT(Y/16):Z=(Y/16-X)*16:Z=INT(Z)

250 IF X<10 THEN X=X+48: GO TO 270

260 X=X+55

270 IF Z<10 THEN Z=Z+48 :GO TO 290

280 Z=Z+55

290 F$=CHR$(X)+CHR$(Z)

300 PRINT#1,F$SPC(1);

310 J=J+1:IF J=16 THEN PRINT#1," ":J=0

320 NEXT

330 PRINTH,"

340 END

The program in Example 2-10 allows you to save a block of memory on either

tape or disk. This program is used to save your machine-language programs

once they have been assembled and debugged. You load and RUN the pro

gram in Example 2-10, and begin by entering a name for the file that will store

the hexadecimal codes of your machine-language program. It will be useful

to keep your file names meaningful. A file name of "EXAMPLE 2-6" is more

meaningful than''AZ1L%Q.'' Next, inform the program that you are going
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to use either DISK or TAPE by entering "D" or "T," respectively. Finally,

enter the starting and ending address of your machine-language program,

and it will store the codes.

Of course, you will need a means to retrieve this information and place it

in the same memory locations from which it was obtained. The program in

Example 2-11 accomplishes this task. Load andRUN Example 2-11. Begin by

specifying the magnetic storage mediumyou are using, namely, "D" or "T."

Then enter the name of the file you wish to place into memory, and the pro

gram does the rest for you. It will be convenient to store both of these pro

grams on disk or tape. They will be particularly useful to you until you pur

chase and learn to use an editor/assembler.

Example 2-10. A Program to Save Codes in Memory on

Tape or Disk

5 REM EXAMPLE-2-10:BINARY SAVE

10 INPUT "THE FILE NAME IS ";F$

11 PRINT "DISK (D) OR TAPE (T)?"

12 INPUT A$

13 IF A$ = "D" THEN 20

14 IF A$ = "T" THEN 200

15 GO TO 11

20 OPEN 15,8,15

30 INPUT#15,A,B$,C,D.

40 IF A THEN PRINT A,B$,C,D:CLOSE 15:STOP

50 PRINT "INPUT THE BEGINNING ADDRESS IN HEX."

60 GOSUB 1000:Al=NUM:K=0

70 PRINT "INPUT THE ENDING ADDRESS IN HEX."

80 GOSUB 1000:A2=NUM:K=0

100 OPEN2,8,2,"@0:"+F$+",S,W"

110 PRINT#2,A1

111 PRINT#2,A2

.120 FOR I=A1 TO A2

130 Z=PEEK(I)

140 PRINT#2,Z

150 NEXT

160 CLOSE 2:CLOSE 15

170 END

200 REM SAVE DATA ON DATASSETTE.

210 PRINT "INPUT THE BEGINNING ADDRESS IN HEX."

220 GOSUB 1000:Al=NUM:K=0

230 PRINT "INPUT THE ENDING ADDRESS IN HEX."

240 GOSUB 1000:A2=NUM:K=0

250 OPEN 1,1,1,"+F$"

260 PRINT#1,A1

270 PRINT#1,A2

280 FOR I=A1 TO A2

290 Z=PEEK(I)

300 PRINT#1,Z

310 NEXT

320 CLOSE 1

330 END

1000 NUM=0:INPUT X$:I=LEN(X$)

1100 FOR J=l TO I

1200 A$=MID$(X$,J,1):Z=ASC(A$)

1300 IF Z>64 THEN Z=Z-55

1400 IF Z>15 THEN Z=Z-48

1500 NUM=NUM+Z*16T(I-J):NEXT

1600 RETURN
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Example 2-11. A Program to Load Codes From Tape or Disk

into Memory

5 REM EXAMPLE 2-11: BINARY LOAD

10 INPUT "THE FILE NAME IS ";F$

11 PRINT "TAPE (T) OR DISK (D)

12 INPUT A$

13 IF A$ = "D" THEN 20

14 IF A$ = "T" THEN 200

15 GO TO 11

20 OPEN 15,8,15

30 INPUT#15,A,B$,C,D

40 IF A THEN PRINT A,B$,C,D:CLOSE 15:STOP

100 OPEN 2,8,2,ll@0:" + F$ + ",S,R"
110 INPUT#2,A1

111 INPUT#2,A2

115 PRINT A1,A2

120 FOR I=A1 TO A2

130 INPUT#2,Z :PRINT Z:POKEI,Z.

150 NEXT

160 CLOSE 2:CLOSE 15

170 END

200 REM "LOAD FROM TAPE"

210 OPEN l,l,0,"+F$"

220 INPUT#1,A1

230 INPUT#1,A2

240 PRINT A1,A2

250 FOR I=A1 TO A2

260 INPUT#1,Z:PRINT Z:POKEI,Z

270 NEXT

280 CLOSE 1

300 END

VI. Summary

An assembly-language program consists of labels for program ad

dresses, instruction mnemonics from Table 2-1, and symbols for locations

of operands. Comments may also be included. An assembly-language

program is not executed. It must be translated into machine language,

and then the machine-language program is executed.

Once the assembly-language program has been written on the form

shown in Figure 2-1, it is translated to hexadecimal codes using the in

struction set summarized in Table 2-1 and the addresses assigned to the

symbols in the assembly-language program. If you have an

editor/assembler, you will type the program on the keyboard and see

it on your screen. Also, the assembler will translate the program into

machine language and save it on disk or store it in memory. Once in

memory, the machine-language program can be called as a subroutine

from a BASIC program with a SYS xxxxx command, where xxxxx is the

starting address of the machine-language program expressed in decimal.

Machine-language programs called in this way should end with the $60

op code for the RTS instruction.
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VII. Exercises

1. Use the op codes in Table 2-1 and these memory assignments:

ADD1 is $C234

ADD2 is $C235

SUMM is $CF00

to assemble this group of instructions:

LDA ADD1 ;Copy the number in ADD1 into the accumulator A.

ADC ADD2 ; Add the number in ADD2 to the number in A.

STA SUMM ; Store the sum in SUMM.

Use the sample programming form in Figure 2-1. The answer can be found in

Table 1-2, since this is the same program as the simple addition program

described in Chapter 1.

2. Decide to start the program described in the previous exercise at $C000. Use

the program in Example 2-8 to enter this address, and load the hexadecimal

codes into memory. You will load, in order, AD 34 C2 6D 35 C2 8D 00 CF, and

then end by entering the RTS op code 60.

3. To provide some data for the program, perform these two BASIC commands:

POKE 49716,3
POKE 49717,4

49716 is $C234 and 49717 is $C235. Thus, the program with whichwe are work

ing will add three and four. Now execute the machine-language program with

a SYS 49152 command. Then use a

PRINT PEEK(52992)

commandfromBASIC to see what sumwas stored in location $CF00 (52992).

You should find the answer seven. Do not be surprised if you obtain eight for

an answer. This may happen since it is possible for the 6510 microprocessor

to have a carry in it. More about this in Chapter 4.

4. Use the BASIC program in Example 2-10 to store your machine-language pro

gram. Use ADD for the file name, a starting address of $C000, and an ending

address of $C009.

5. Turn off the computer. Turn it on again, and then attempt to retrieve your pro

gram from the magnetic medium you are using. Use the program in Example

2-11 to do this. Enter the file name ADD.

6. Finally, use the program in Example 2-9 to display the numbers in the memory

locations you have just filled to see that the correct hexadecimal codes have

been loaded back into memory. RUN Example 2-9; entering $C000 for the start

ing address and $C009 for the ending address. Compare the codes that are

printed with the program codes given above or in Table 1-2.



Data Transfer Instructions-

Using an Editor/Assembler

I. Introduction

The instruction set of the 6510 microprocessor can be divided into several

subsets, as in Table 1-1, which provides the English-language descriptions

of the 6510 instructions. The easiest instructions to understand are those found

in the group identified in Table 1-1 as Data Transfer Instructions. The data

transfer instructions you will learn in this chapter include the LDA, STA, LDX,

STX, LDY, STY, TAX, TXA, TAY, and TYA instructions. The op codes for

the addressing modes we will use in this chapter are shown in Table 3-1.

Table 3-1. Op codes for the instructions used in Chapter 3.

Op Codes for Each Addressing Mode

Logical

Mnemonic Description Immediate Absolute Zero-page Implied

$A9 $AD $A5

A2

A0

LDA

STA

LDX

STX

LDY

STY

TAX

TXA

TAY

TYA

A-M

M-A

M-X

X-M

M-Y

Y-M

A-X

X-A

A-Y

Y-A

8D

AE

8E

AC

8C

85

A6

86

A4

84

AA

8A

98

A8

The logical descriptions of each instruction are also given in Table 3-1. Think

of the arrow in the logical description column as implying the transfer of an

eight-bit code. The data transfer instructions do not modify numbers or codes

in any way: they transfer codes either from the microprocessor to memory,

41
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from memory to the microprocessor, or from one register to another in the

microprocessor. You have already been introduced to the LDA and STA in

structions, so you are on familiar ground.

Although it is possible to write short assembly-language programs without

an editor/assembler, for long programs it is more convenient to use one. You

will also be introduced to an editor/assembler in this chapter. The sections

in this chapter related to the editor/assembler were included to give you a feel

ing for the process of using an editor/assembler on the computer and for its

features. We used the disk-based Develop-64 system which is part of a pack

age called The Machine Shop, available from:

FSI Software

P.O. Box 7096

Minneapolis, MN 55407

(800) 328-0145

Our choice should be interpreted neither as an endorsement of this product

nor a criticism of the editor/assemblers we did not use. Perhaps it would be

best for you to start with a very inexpensive assembler, such as Commodore's

own assembler. Consult your Commodore dealer for details. A cartridge-

based assembler called MIKRO 64 is available from

Skyles Electric Works

231E. South Whisman Road

Mountain View, CA 94041

More advanced programmers would probably choose the MAE (Macro

Assembler Editor) carried by several dealers and mail-order firms, or the PAL,

available from: ,

Pro-Line Software, Ltd.

755 The Queensway East, Unit 8

Mississauga, Ontario L4Y-4C5

Once again, my advice to beginning programmers is to assemble programs

using Table 2-1, a pencil, and a programming form similiar to the one in Figure

2-1. The hexadecimal codes can be loaded into memory with the simple pro

gram in Example 2-8, and programs can be executed from BASIC with the

SYS command. Do not purchase an assembler until you are making satisfac

tory progress in your study of assembly language, perhaps finishing Chapter

6. At that point, you will know if you are seriously or just mildly interested

in assembly-language programming. Only if you are seriously interested

should you make the considerable investment in an editor/assembler. By the

time you have mastered the first half of this book, you will also know enough

about assembly language to make a wiser choice than you can make at this

point in your programming career. Meanwhile, continue to study adver

tisements and reviews of assemblers that appear in computer magazines. Ex-

assembler. Other important considerations are the quality of the documen

tation that accompanies the assembler software and the speed and ease with

which the assembler works.
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II. Data Transfer Instructions: Load and Store

The LDA and STA instructions were diagrammed in Figures 1-5 and 1-6.

Once again, refer to those figures for a moment. When the LDA instruction

is executed, an eight-bit code is copied from memory into the accumulator.

When the STA instruction is executed, the eight-bit code in the accumulator

is transferred to a memory location. Recall that we compared the LDA instruc

tion to a PEEK command in BASIC, and we compared the STA instruction

to a POKE command in BASIC.

The LDX and STX instructions are identical to the LDA and STA instruc

tions, except that the X register rather than the accumulator is used. If the X

register is substituted for the accumulator in Figure 1-5, it becomes a diagram

of the LDX instruction. Likewise, if the X register is substituted for the ac

cumulator in Figure 1-6, it becomes a diagram of the STX instruction. Two

similar statements can be made for the LDY and STY instructions.

It was probably obvious that the LDX and the LDY instructions work in the

same way as the LDA instruction. Likewise, the STX and STY instructions

work in the same way as the STA instruction. Thus, it is not surprising that

the three "loads'' have similar addressing modes and the three "stores" have

similar addressing modes. Notice from the instruction set in Table 2-1 that

the LDA, LDX, and LDY instructions use the immediate, absolute, and zero-

page addressing modes. Also notice that the STA, STX, and STY instructions

use the absolute and zero-page addressing modes.

Use of the LDA and STA instructions in a program was illustrated in several

examples in Chapter 2. Example 3-1 illustrates the LDX and STX instructions

in a data transfer operation, the LDX instruction is used in the immediate ad

dressing mode, and in that mode it is a two-byte instruction. The STX instruc

tion is used in the absolute addressingmode, and in that mode it is a three-byte

instruction. The program stores the number seven in the $21st register of the

VIC chip. The contents of this register determine the video background color.

After executing the program, the background should be yellow.

The purpose of our examples is to illustrate instructions and addressing

modes rather than to produce eye-catching results. On the other hand, it is

important to have the program do something so that you can tell if it executed

correctly. It is also useful to show some real applications rather than some

artificially constructed programs. Try running the program using the tech

nique provided in Example 2-8. Notice that an RTS instruction has been in

cluded in Example 3-1 to ensure the proper operation of Example 2-8. Many

of our sample programs will end in this way.

Example 3-1. Using the X Register for a Data Transfer

Object: Change the video background color to yellow.

10 START LDX #$07 ;LDX IN IMMEDIATE ADDRESSING MODE. C000 A2 07
11 STOP STX VIC21 ;STX IN ABSOLUTE ADDRESSING MODE. C002 8E 21 DO
12 RTS ;RETURN TO BASIC INTERPRETER. C005 60
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The program in Example 3-2 illustrates the LDY and STY instructions. Its

function is to set the border color to blue. "VIC20" is a symbol for the $20th

register in the VIC chip, a register that controls the border color. The address

ing modes are identical to those used in Example 3-1.

Example 3-2. Using the Y Register for a Data Transfer

Object: Change the color of the video border to blue.

10 BEGIN LDY #$06 ;LDY IN IMMEDIATE ADDRESSING MODE. C000 A0 06

11 STY VIC20 ;STY IN ABSOLUTE ADDRESSING MODE. C002 8C 20 DO

12 RTS ;RTS USES IMPLIED ADDRESSING MODE. C005 60

We have not yet illustrated the zero-page addressing mode. The next two

examples use this mode. Any instruction that uses the zero-page address

ing mode will be a two-byte instruction, whereas the absolute addressing

mode requires three bytes. Refer to the instruction set summary in Table 2-1

and observe that the absolute addressing mode requires one more dock cycle

to execute the instruction than the zero-page addressing mode. Thus, the zero-

page addressing mode is more efficient in terms of both program space and

execution time. Notice that the editor/assembler used to write the programs

in Examples 3-3 and 3-4 prefixes the symbol for a zero-page memory location

with a plus sign (+). The plus sign informs the assembler that the zero-page

addressing mode is desired.

The program in Example 3-3 places a graphics character for a ball on the

screen, obtains a color code for the ball from location $0002, and stores the

color code in the color memory. The color code is fetched frommemory using

the LDY instruction in the zero-page addressing mode. If you want to try the

program, POKE a color code from 0 to 15 into location $0002 before running

the program. The colored ball will appear in the lower right-hand corner of

the screen. When you return to BASIC, the ball may scroll upward.

Example 3-3. Using the LDY Instruction in the Zero-Page

Addressing Mode

Object: Place a ball on the screen and color it.

10 START

11

12

13

14

LDY

LDA

STA

STY

RTS

+COLOR

#$51

SCRMEM

COLMEM

;FETCH

;$51 IS

;STORE

;PLACE

THE BALL COLOR.

SCREEN CODE FOR A BALL.

CODE IN SCREEN MEMORY.

COLOR CODE IN MEMORY.

cooo

C002

C004

C007

C00A

A4

A9

8D

8C

60

02

51

E7

E7

07

DB

The next programming example illustrates the STA instruction in its zero-

page addressing mode (refer to Example 3-4). This program writes a number

to the output port at location $0001. The effect of the program is to switch an

8K bank of R/W memory into the address space occupied by the 8K BASIC

interpreter. Be prepared to lose any BASIC program you have in memory

whenyou execute this programbecause you will have to switch off the Com
modore 64 and turn it on again to get back into BASIC.
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Why would you want to replace the interpreter with R/W memory? If, for

example, a machine-language word processor is being executed, then you

have no need for the BASIC interpreter, but you do need a great deal ofR/W

memory to store either the program or the data. In that case, it is useful to

be able to replace the BASIC ROM with R/W memory.

Example 3-4. Using the STA Instruction in the Zero-Page

Addressing Mode

Object: Replace the BASIC interpreter with R/W memory.

10 ORIGIN LDA #$01 ;LDA IN IMMEDIATE ADDRESSING MODE. C000 A9 01

11 STA +PORT ;STA IN ZERO PAGE ADDRESSING. MODE. C002 85 01

12 RTS C004 60

Often a programbegins by storing certain numbers invarious memory loca

tions in preparation for the program that follows. The sequence of instruc

tions that handles these preparatory steps is called an initialization routine.

Our last two examples in this section consist of short initialization routines,

one for Voice #1 in the SID chip and one for Sprite #0 in the VIC chip. The

SID and the VIC will be described in more detail in Chapters 10 and 11, respec

tively. The programming examples here will provide additional illustrations

of data transfer instructions.

Complex chips like the VIC and SID frequently require that a series of

registers in the chip contain specific values before proceeding. Data transfer

instructions are used to store these values in the registers. Example 3-5 il

lustrates some of the steps required to initialize the SID chip to start "play

ing7 ' a ramp waveform from Voice #1. Note the use of the LDA and STA

instructions.

Before executing the program, you should clear the SID registers by RUN-

ning this BASIC program:

10 F0RI=54272T054296:POKEI,0:NEXT

We will learn how to do this in assembly language in Chapter 8.

If your TV or video monitor lacks sound, you mayhave to connect the Com

modore 64 audio output to an input in your audio system. Execute the pro

gram and you will hear a tone.

Example 3-5. Initializing SID Registers

Object: Initialize the SID so that Voice #1 plays a tone using the ramp waveform.

;$0F CORRESPONDS TO MAXIMUM VOLUME. C000 A9 OF

;SET THE VOLUME ON SID. C002 8D 18 D4

;CHOOSE A NUMBER FOR THE HIGH BYTE COOS A9 19

;OF THE FREQUENCY FOR VOICE #1. C007 8D 01 D4

;SET THE ATTACK/DECAY RATE C00A A9 EE

;FOR VOICE #1 ON SID. C00C 8D 05 D4

;SET THE SUSTAIN LEVEL FOR VOICE #1 C00F A9 A0

10 INITLZ

11

12

13

14

15

16

LDA #$0F

STA SID18

LDA #$19

STA SID01

LDA #$EE

STA SID05

LDA #$A0
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17

18

19 END

20

STA SID06

LDA #$21

STA SID04

RTS

;ON SID. C011 8D 06 D4

;SELECT A RAMP WAVEFORM FOR VOICE #1 C014 A9 21

;AND START THE SOUND. C016 8D 04 D4

C019 60

Example 3-6 illustrates the initialization procedure required to place a sprite

on the screen. In this case, Sprite #0 is given a blue color on a yellow

background with a blue boundary. You should compare this routine with the

BASIC routine on page 71 of the Commodore 64 User's Guide that comes with

your computer.

Example 3-6. Using

Initialize a Sprite

Object: Initialize Sprite #0.

10

11 ORG

12

13

14

15

16

17

18

19

20

21

22

23

24

LDA #$0D

STA $07F8

LDA #$01

STA VIC15

LDA #$07

STA VIC21

LDA #$06

STA VIC27

STA VIC20

LDX #$80

STX VIC00

LDY #$80

STY VIC01

RTS

Data Transfer Instructions to

;SPRITE #0 MEMORY POINTER.

;TURN ON SPRITE #0 ON THE VIC.

;SELECT A YELLOW BACKGROUND.

;SELECT BLUE FOR THE SPRITE.

;SELECT A BLUE BORDER COLOR.

;$80 = 128 WILL BE THE X COORDINATE

;OF SPRITE #0.

;CHOOSE 128 FOR THE Y COORDINATE

;OF SPRITE #0.

cooo

C002

C005

C007

C00A

cooc

COOF

con

C014

C017

C019

. C01C

C01E

C021

A9

8D

A9

8D

A9

8D

A9

8D

8D

A2

8E

A0

8C

60

0D

F8

01

15

07

21

06

27

20

80

00

80

01

07

DO

DO

DO

DO

DO

DO

A BASIC routine to define a rectangular dot matrix for the sprite in the pro

gram in Example 3-6 is given in Example 3-7. An efficient way to accomplish

the same objective in assembly language must be postponed until Chapter

8. RUN the program in Example 3-7 before executing the program in

Example 3-6.

Example 3-7. A BASIC Program to Define a Rectangular Sprite

0 REM EXAMPLE 3-7

1 ADDR = 832

2 FOR I = 0 TO 62

3 POKE ADDR + 1,255

4 NEXT

III. Data Transfer Instructions: Register Transfers

We turn next to the TAX, TXA, TAY, and TYA instructions. Referring to Table

3-1, note that these instructions use a single addressing mode, namely, implied

addressing. Both the source and the destination are implied by the instruction.

A diagram of the TAX and TXA instructions is shown in Figure 3-1. It should

be simple to imagine corresponding diagrams for the TAY andTYA instructions.
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ACCUMULATOR

1 \ f \ ' \ 1 \ ' \ 1 \

X REGISTER

6510 MICROPROCESSOR

(b)

ACCUMULATOR

I i i [ i \ i { i \ i [ i { i \

X REGISTER

6510 MICROPROCESSOR

Figure 3-1. (a) Diagram of the TAX instruction, (b) Diagram of the TXA

instruction.
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Certain programs require an initialization sequence of instructions that clears

all three of these registers. Clearing a register means placing a zero in each of

the eight bits. What is the most efficient way to do this? A candidate for the

optimum way of clearing A, X, and Y is illustrated with Example 3-8.

Example 3-8. A Program to Clear A, X, and Y

Object: Clear all the hits in A, X, and Y to zero.

10 ORIGIN LDY #$00 ;CLEAR THE Y REGISTER. C000 A0 00

11 TYA ;IMPLIED ADDRESSING MODE. C002 98

12 TAX ;IMPLIED ADDRESSING MODE. C003 AA

13 RTS C004 60

Consult the instruction set summarized in Table 2-1 and verify that the pro

gram in Example 3-8 takes four bytes of program memory and will execute

in six clock cycles. Canyou write a program to do the same thing in less time

or with fewer bytes of program memory?

Although this concludes the sample programs given in this chapter, we will

give several programming problems at the end of the chapter. We turn next

to the operation of an editor/assembler.

IV Writing and Assembling Programs*

Now that you have mastered several instructions in the 6510 instruction

set, you might be interested in seeing how the programming process proceeds

with an editor/assembler. The editor part of an editor/assembler allows you

to use the computer to write an assembly-language program. The assembler

translates the assembly-language program you have written with the editor

into the kind of program listings you have seen in Examples 3-1 to 3-9. In ad

dition to translating assembly language into machine language, the assembler

may also load the machine-language codes into memory where the program

is ready to be executed. An editor/assembler software package is sometimes

called a development system.

Of course, you may choose to purchase an editor/assembler other than

the Develop-64 system that we will describe. In that case, this section will

not be as useful, but you might browse through it simply to see how this

particular editor/assembler works. At the very least, you might become

aware of features you want to find in the editor/assembler that you decide

to purchase.

Our remarks apply to the disk-based Develop-64 portion of The Machine

Shop. We will use the program in Example 3-3 to describe the procedure of

editing and assembling a program. The Develop-64 system comes with ex

tensive documentation, so we will describe only the most important features.

*The beginning programmer may find this and future sections marked with an asterisk to be more dif

ficult. Skip these if that is the case.
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A Using the editor

Place the Develop-64 disk in the disk drive and type

LOAD "D",8,1

Wait for the following message to appear on the screen:

DEVELOP-64 OVERWRITES THE CONTENTS OF A BLOCK OF MEMORY. CHOOSE ONE:

1) $0800-$47FF (2048-18431)

2) $6000-$9FFF (24414-40959)

PRESS lor 2:

To begin, press 1, and the main menu, shown below, will appear:

1) EXIT 2) EDIT 3) ASSEM 4) DECODE 5) DEBUG

6) LOAD 7) SAVE 8) CLEAR 9) CONFIG 0) DISK

Select the EDIT option by pressing the 2 key. The screen will clear and a

menu will appear in the upper left hand corner with a flashing cursor to the

right of the colon prompt symbol. This will be line 1 in your assembly-

language program. A program line is terminated by pressing the "RETURN"

key on the Commodore 64. Hereafter, we will not specify RETURN. The line

number "1", and all subsequent line numbers, are automatically assigned.

Documenting your program with a name is good practice. For line 1

enter

^EXAMPLE 3-3

as your program name. The semicolon (;) prefix on a line indicates that the

line contains a comment. This is line 1 of your program. Similar to the situ

ation of REM lines in BASIC, comment lines are ignored during the assembly

process.

After you press RETURN, you will get a prompt for line 2, and the flashing

cursor will reappear.

Examine the program in Example 3-3. We used the symbol "COLOR" for

the address $0002. This is accomplished with the "EQU" assembler directive.

A directive is an instruction to the assembler: it is not an assembly-language

instruction. To identify COLOR with the address $0002, type

COLOR EQU$0002

following the colon prompt. With the Develop-64 editor you leave a space

between "COLOR" and "EQU" but you do not put a space between "EQU

and the "$0002". Line 2 is now completed.

Two other symbols, COLMEM and SCRMEM, must still be defined. Enter

two more lines as follows:

COLMEM EQU$DBE7

SCRMEM EQU$07E7

which become lines 3 and 4 of your assembly-language program.
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Next, we will define the address of the location that stores the first pro

gram byte. Following the colon prompt, enter line 5 with a leading space

followed by EQU$C000. It should look like this on screen:

5:EQU$C000

We have now determined that the program will begin at memory location

$C000.

Notice that all the work that we have done so far has not yet generated one

line with a 6510 instruction. We have just taken care of the necessary prelimi

nary steps. It will be easier to separate the preliminary lines from the pro

gram lines if we insert several empty lines. Following the colon prompt, type

a semicolon (;) and press RETURN. This becomes line 6. Add several more

lines with leading semicolons.

Nowwe are ready to enter the program. Following the quote prompt, enter

the line

START LDY- COLOR ;GET COLOR CODE.

Notice once again that there is a space between the label "START'7 and the

mnemonic "LDY", but there is no space between the LDY mnemonic and

the symbol "«-COLOR". The left-arrow symbol is used by this assembler

to indicate that the zero-page addressing mode is being requested by the pro

grammer.

Now enter, in order, the following four program lines to complete the

editing task:

LDA#$51; SCREEN CODE FOR BALL.

STASCRNMEM ; STORE CODE IN SCREEN MEMORY.

STYCOLMEM ; COLOR CODE INTO COLOR MEMORY.

RTS

the mnemonics and information in the operand field. The editor will insert

these spaces later.

You have now finished editing the program. After entering the last line,

press the RETURN key once again.

While in the EDIT mode, you can use various commands outlined in the

Develop-64 documentation to modify lines, list lines, or insert additional

lines. This is similar to the editing that the Commodore 64 provides for

BASIC programs, and it is a very important feature of an editor.

You will want to save your program, so select the SAVE option, item 7.

When asked to choose between source (S) or binary (B), choose the default

source option since you are saving your source code. Then, upon request,

enter the file name, EXAMPLE 3-3. The disk drive will start and your pro

gram will be saved. The main menu will return to the screen.
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B. Using the assembler

Select the 3) ASSEM option from the main menu if the source program is

still in memory; otherwise, select the 6) LOAD option. If you select the load

option, select the EXAMPLE 3-3 source file, load it into memory, and then

select the 3) ASSEM option from the main menu. You are now in the

assembler.

After selecting the ASSEM option, you will see a sub-menu with the

options 1) EXIT, 2) ASSEMBLE, or 3) SYMBOL. Choose the 2) ASSEMBLE

option. You will be asked if you wish to

ASSEMBLE TO MEMORY?

Enter a "Y" for :"YES". This causes your machine-language program to

be stored in memory, where it may be executed later from BASIC with a SYS

49152 command.

The next prompt,

CREATE OBJ/PRG/NEITHER

should be answered with a "O" for OBJ, causing your machine-language

program to be stored as a sequential file on disk. A prompt will ask you for

the name of the file. Enter "EXAMPLE 3-3."

The next prompt will be

SCREEN PRINTER, OR ERRORS ONLY?

If you have a printer, give a "P" response. Other wise use the "S" response.

Your program will now be assembled, and the machine-language (object)

program will be stored in memory and on the disk as a sequential file.

The entire output is shown in Example 3-9. (This output is from an earlier

version of the Development-64 assembler. The latest version places the hexa

decimal listing on the left.) It should be clear that in previous examples we

have suppressed the "EQUATE" section for the sake of simplicity. In the ex

amples that follow, we will continue to suppress the "EQUATE" section for

simple programs in order to simplify the listings. Also, observe that my

printer replaces the Commodore 64 left-arrow (zero-page addressing mode)

symbols with plus signs (+).

Example 3-9. The Output of the Assembler for Example 3-3

;COLOR NUMBER STORAGE. 0002

DBE7

07E7

C000

;FETCH THE BALL COLOR. CO00 A4 02

;$51 IS SCREEN CODE FOR A BALL. C002 A9 51

;STORE CODE IN SCREEN MEMORY. C004 8D E7 07

;PLACE COLOR CODE IN MEMORY. C007 8C E7 DB

C00A 60

1

2

3

4

5

6

7

8

9

10

11

12

13

14

;EXAMPLE

COLOR

COLMEM

SCRMEM

START

;

•

•

;

START

EQU

EQU

EQU

EQU

LDY

LDA

STA

STY

RTS

3-9

$02

$DBE7

$07E7

$C000

♦COLOR

#$51

SCRMEM

COLMEM
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You can see that it will require some time to become proficient with an

editor/assembler. The more powerful the development package, the more time it

will take to learn to use the options. This effort may reduce the time you have

to learn assembly language and it may complicate those efforts. This is why we

recommend that you begin by hand-assembling simple programs.

In any case, it is worth adding that some preliminary steps should be taken

before the editing/assembling process begins. Have the program objective clear

ly in mind. What input is required? Wha

you will use to store the program. Any locations from $C000 to $CFFF are ap

propriate for the Commodore 64. These locations are reserved for machine-

language programs. What memory locations are required to store the parameters

used in the program, what are their addresses, and what symbols will you use

to represent them? What SID, VIC, or CIA regist)ers do you ni^ to reference, and
what symbols will you use? Write this information on paper.

Complex programs may be subdivided into smaller modules and these may

require flowcharts. Before writing the actual assembly-language program, try

writing your program in pseudo-code, a combination of English statements and

assembly-language mnemonics. The main point is to express, in some kind of

language, what you want the program to do before youbegin writing the assembly-

language version. The importance of these preliminary steps cannot be overem

phasized if efficient programming is your objective.

C. Executing the machine-language program

You have assembled your program and you are ready for the moment of

truth: does it work? If the assembler stored the program into memory start

ing at location 49152 ($C000), then after leaving the Develop-64 program,

you can execute it by typing SYS 49152. Almost all of our examples produce

an observable effect, so you will know if the execution was successful. You

can also use PEEK instructions to see whether the memory locations modi

fied by the program were, in fact, modified.

If you did not have the assembler store the program into memory, then

you must load the object program from disk or tape. A program that first

loads Develop-64 object code from the disk and then executes the program is

listed in Example 3-10. Notice that you must change program line 10 to select

the machine-language (object) file you wish to execute. In our case, we

selected the program we assembled above, namely, EXAMPLE 3-3. OBJ.

Try it.

Example 3-10. A Program to Load and Execute a Machine-

Language Routine

5 REM EXAMPLE 3-10

10 OPEN 1,8,2,"0:EXAMPLE 3-3.OBJ,S"

20 CLOSE 15:OPEN 15,8,15

30 INPUT#15,A,B$,C,D:IF A THEN PRINT A,B$,C,D:CLOSE1:CLOSE15:STOP
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40 INPUT#l,N:IFN=-1000 THEN CLOSE1:GOTO80

50 IF N<1THEN POKEP,-N:P=P+1:GOTO 40

60 P=N :GOTO 40

80 SYS 49152

90 PRINT "MISSION ACCOMPLISHED."

100 END

D. Debugging programs

Many development packages will execute a program in a single-step mode.

In this mode, one instruction is executed at a time. After each instruction is

executed, the codes in each of the registers in the 6510 are displayed on the

screen. This is a useful technique to debug programs because you can see the

effect of any instruction, and you can observe your program doing its thing

much more slowly—in fact, as slowly as you wish.

Use the single-step mode of your development package to execute the pro

gram in Example 3-3. In the Develop-64 system, this is the DEBUG program.

The first instruction in Example 3-3 is a LDY $02 instruction. Suppose the

number $07 is in location $0002. Execution of this instruction in the single-

step mode will show that the number in the Y register is now seven. Now the

next instruction in the program is displayed. This is the LDA#$51 instruc

tion. After it is executed, the number $51 (81 in decimal) will be displayed for

A. Continue to single-step through the program until you see how the single-

step mode works. You can exit this mode by selecting the appropriate exit

options in the menu. The single-step mode of operation is an extremely

useful tool.
This completes our discussion of the Develop-64 editor/assembler. If and

when you decide to seriously pursue assembly-language programming,

we strongly recommend that you purchase an editor/assembler develop

ment package. We hope that this brief description of one such package

will give you a better idea of what features you want in the package you

purchase.

V Summary

The LDA, LDX, and LDY instructions copy an eight-bit code from memory

into the A, X, and Y registers, respectively. These three instructions use the

immediate, absolute, or zero-page addressing modes. The STA, STX, and STY

instructions transfer an eight-bit code from the A, X, and Y registers, respec

tively, to a location in memory. These three instructions use the absolute and

zero-page addressing modes.

Onthe other hand, the TAX, TXA, TAY, andTYA are used to transfer eight-

bit codes from one 6510 register to another. The source register is indicated

by the second letter in the instruction and the destination register is indicated

by the last letter in the instruction. Since memory is not accessedby these in

structions, they use only the implied addressing mode.
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Data transfer instructions are used to move information about in the

memory of the microcomputer; to initialize registers in I/O chips, such as

the VIC, SID, and CIA; and to read and write to input/output ports, such as

the one at location $0001 on the 6510 microprocessor.

Serious assembly-language programmers will eventually require a software

package called an editor/assembler to help them develop assembly-language

programs. This program development package should provide the capability

to write, modify, list, assemble, execute, and debug programs.

VI. Exercises

1. Assemble this program:

LDA MEM1

STA MEM2

RTS

where MEM1 is a symbol for the address $C010 and MEM2 is a symbol for

the address $0002. Use Example 2-8 to store the object code starting at loca

tion $C000. Use a

POKE 49168,255

command in BASIC to place the number $FF in location $C010. Execute the

program from BASIC with a

SYS 49152

command. Finally, use a

PRINTPEEK(2)

command to see if the number $FF was transferred from location MEM1 to

location MEM2. Identify the addressing mode used for each assembly-

language instruction.

2. Assemble this program:

LDY #$00

STY MEM2

RTS

Follow the procedures outlined in Exercise 1 to load, execute, and test the pro

gram. After the program is executed, what number should you find with the

PRINT PEEK (2) instruction? Identify the addressing mode used for each

instruction.

3. Write a program to transfer the eight-bit code in location $FFFF to location

$0002. Use the accumulator as the data transfer register. Before executing the

program, POKE zero into location $0002. After execution, PEEK into location

$0002 to see what number is there.

4. Write a program to change the background color to red. Use the X register as

the data transfer register. Refer to Example 3-1. Two is the color code for red.
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5. Write a program to load A, X, and Y with $FF. Use the single-step mode to

execute this program and observe how the numbers in the registers change

as the program is executed. Use the TAX and TAY instructions.

6. If you have an editor/assembler, use it to assemble the program in Example

3-6.

7. Write a program to transfer the hours, minutes, seconds, and tenths of

seconds in the time-of-day clock at locations $DC0B, $DC0A, $DC09, and

$DC08, respectively, to locations $00FB through $00FE.

8. What three instructions that you learned in this chapter are analogous to the

POKE instruction in BASIC? What three instructions are analogous to the

PEEK instruction in BASIC?

9. Consider this BASIC instruction

20 A = Y

where A and Y are BASIC variables, not the codes in the A and Y registers.

What does the program line do? How do the values ofA andY compare after

the program line 20 is executed? Can you draw an analogy between this

BASIC instruction and the TYA? Describe what happens when each of the

following instructions are executed: TYA, TAY, TAX, TXA.

10. Suppose the 6510 microprocessor had TYX andTXY instructions in its instruc

tion set. Give an English-language and logical description of these

hypothetical instructions.





Arithmetic Operations in

Assembly Language

I. Introduction

For centuries human beings have been motivated to find faster and easier ways

to perform arithmetic computations. The abacus, logarithms, and the slide rule

are examples. The electronic computer is the most recent product of that motiva

tion, and arithmetic operations can now take place in a matter of microseconds.

In mathematical applications the computer functions as a computer.

Two other, though less obvious and more recent, motivations have con

tributed to the development of the computer. These are the necessity to

manipulate enormous amounts of information and the necessity to control

machines more precisely, consistently, and quickly than human beings. In

the first of these applications, the computer functions as a data processor; while

in the second, it operates as a controller. In fact, the microprocessor was

developed in response to the need for controllers, and only later did it come

to be associated with personal computers. The microcomputer is now a per

vasive influence in our culture.

In this chapter, we will be concerned with doing arithmetic at its most

elementary level. Although a number of recently developed microprocessors

have instructions for multiplying and dividing, the 6510 is only directly capable

of adding and subtracting. To multiply and divide, you must write an

assembly-language program consisting of many instructions. We will con

sider such programs in Chapter 7. In this chapter, you will learn to use the

ADC, SBC, CLC, SEC, CLD, SED, and CLV instructions in their most elemen

tary addressing modes. The logical description of these instructions and the

op codes we will use in this chapter are given in Table 4-1.

Thus far we have been able to get along quite nicely without using the pro

cessor status register, which is also called the P register. Refer once again to

Figure 1-7, where the internal registers of the 6510 microprocessor are

diagrammed. The P register is of fundamental importance to arithmetic opera

tions, and we will need to discuss it in this chapter.

57
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Table 4-1. Op codes for the instructions used in Chapter 4.

Logical Op Code for Each Addressing Mode

Mnemonic Description Immediate Absolute Zero-Page Implied

ADC

SBC

CLC

SEC

CLD

SED

CLV

JSR

RTS

A+M+C-A

A-M-C-A

0-C

1-C

0-D

1-D

0-V

No

simple

description

$69

E9

$6D

ED

20

$65

E5

$18

38

D8

F8

B8

60

Finally, to provide practice in using the arithmetic instructions we will need

to use one other instruction, namely, the JSR (jump to subroutine) instruc

tion. You are already aware that in order to call a machine-language program

with the BASIC language SYS command, you must end the program with

a RTS (return from subroutine) instruction. The JSR and RTS instructions are

companions, and they will be discussed in more detail in Chapter 9. It is possi

ble, however, to use these two instructions without a profound understand

ing of them, and we have found it useful to do so.

II. The Processor Status Register and the Carry Flag

We begin with a brief discussion of the processor status register. It was il

lustrated in Figure 1-7, but it is shown with considerably more detail in Figure

4-1. Each bit in the P register is called a status bit, flag, or condition code. We will

generally refer to the status bits as flags. As you shall see, the flags act as signals

for certain conditions.

PROCESSOR STATUS REGISTER

NEGATIVE FLAG

SETON1INBIT7

OVERFLOW FLAG—

SET ON OVERFLOW

BREAK FLAG

SET BY BRK INSTRUCTION

SET= 1

CLEAR = 0

- CARRY FLAG

SET ON CARRY OR NO BORROW

- ZERO FLAG

SET ON ZERO RESULT

- INTERRUPT DISABLE FLAG

SET DISABLES IRQ INTERRUPT

- DECIMAL MODE FLAG

SET ENABLES BCD ARITHMETIC

Figure 4-1. Diagram of the processor status register.

Definitions of two terms are appropriate here:

• A flag is set if there is a binary one in the corresponding bit of the P register.

• A flag is clear if there is a binary zero in the corresponding bit of the P register.
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The importance of the carry flag to the addition operation is easily

understood. Each memory location can hold an eight-bit number. The largest

possible eight-bit number is $FF (255 in decimal). The ADC instruction adds

two eight-bit numbers. What happens if the sum exceeds $FF (255)?

Recall from elementary-school arithmetic that adding the digits in one place
value column frequently required a carry to the next column. The same situa

tion is true in adding eight-bit numbers. When the sum of two eight-bit

numbers exceeds $FF, the carry flag in the P register will be set. In this situa

tion, the carry flag acts as a signal that the sum exceeded the capacity of an

eight-bit number to express it.

Assume that the numbers $FF and $80 are added with the ADC instruction.

Since $FF + $80 = $17F, the numberfound in the accumulator after the addi

tion will be $7F and the carry flag, C, will be set. If the sum of two numbers

is less than $FF, the carry flag is cleared.

We have given an informal discussion of the carry flag because it is highly

important to the present discussion. The other flags will be described as the

need arises. Refer to Chapter 7 for additional details.

III. Flag Modification Instructions

Associated with some of the flags in the P register are flag set and clear in

structions. The flag modifiers of interest to us in this chapter are the CLC, SEC,

CLD, SED, and CLV instructions. These instructions are diagrammed in

Figure 4-2. When executed by the microprocessor, they either set or clear a

flag in the processor status register. For example, the CLC instruction clears

the carry flag, while the SEC instruction sets the carry flag.

INSTRUCTION

N B

PROCESSOR STATUS

REGISTER

0 CLV

CLD

0 CLC

1

SEC

SED

Figure 4-2. Diagram of the CLC, SEC, CLD, SED, and CLV instructions.
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The CLC and SEC instructions are used to provide the correct value for the

carry flag before performing an arithmetic operation. Refer to the instruction

set in Table 2-1 or the discussion below to find that when the ADC instruc

tion is executed, it adds the bit in the carry flag. Thus, the CLC instruction

must be used to clear the carry before adding two eight-bit numbers. Otherwise,

the sum may be incorrect. Also, you will soon see that the SEC instruction

should be used to set the carry before subtracting one eight-bit number from

another.

The use of the other flag modification instructions will be described as the

need arises.

IV. The ADC Instruction

The four possibilities that can occur when two one-bit numbers, symbol

ized byA and M, are added as shown in Table 4-2. The sumproduces a result

R and a carry C. The carry is normally added to the more significant bit on

the left when the numbers A andM are larger than single-bit numbers. The

addition of two eight-bit numbers is illustrated in Figure 4-3. Notice that a carry

from one bit position appears in the addition of the bits to its left. This pro

ceeds until any carryfrom bit seven appears in the carryflag in the processor status

register. Figure 4-3 is, in fact, a description of the 6510 ADC instruction. Notice

that the value of the carry flag before execution of the ADC instruction is added

to the least-significant bit. This explains why you should use a CLC instruc

tion to clear the carry flag before the ADC instruction when doing eight-bit

arithmetic.

Table 4-2. Definition of one-bit binary addition.

A +M= R C

0 + 0 = 0 0

0 + 1 = 1 0

1 + 0 = 1 0

1 + 1 = 0 1

R = RESULT

C = CARRY

The ADC (add with carry) instruction may be defined as follows:

• The ADC instruction adds a number M in memory, the number A in the ac

cumulator, and the value of the carry flag. The value of the carry flag is added

to the least-significant bit. The sum is stored in the accumulator.

• Symbolically, the ADC instruction is expressed as

A + M + C—A

whereM and A are eight-bit numbers and C is the one-bit number in the carry

flag.

• After the ADC instruction is executed, the carry flag will be set if the sum ex

ceeded $FF; otherwise, it will be cleared.
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r
C6
+

A7

M7

R7

r
C5
+

Ae

M6

R6

fl
C4
+

A5

M_5

R5

C3
+

A4

M4

R4

fl
C2
+

A3

M3

r7

■f~
C1
+

A2

M2

R2

Co
+

Ai

Hi
R1

+

Ao

CARRY FLAG

CARRY FLAG AFTER ADC INSTRUCTION

Figure 4-3. Diagram of the ADC instruction.

Example 4-1 illustrates the addition of two eight-bit numbers. Notice that the

carry flag, Q is clear before the addition. Since the sum does not exceed $FF,

the carry flag is also clear after the addition.

Example 4-1. Adding Two Eight-Bit Binary Numbers

Assume $21 is in the accumulator and $8A is in the memory location referenced

by the ADC instruction. Also assume the carry flag is clear before the ADC opera

tion. Find the result of the ADC instruction.

Solution:

Hexadecimal

0

$8A

$21

= $AB

0

Binary

0

10001010

00100001

= 10101011

0

Symbolic

C

M

A

- A

- C

Example 4-2 illustrates the use of the ADC instruction in a program. One

of the addends is stored in NUMl, a symbol for the zero-page location

$00FB. The other addend is stored in location $00FC, symbolized by

NUM2. Both the LDA and ADC instructions are used in the zero-page

addressing modes. The sum is stored in location $00FD, symbolized by

SUM. If the numbers $21 and $8A are stored in locations NUMl and

NUM2, then the answer $AB given by Example 4-1 will be stored in SUM

after the program is executed. Notice in example 4-1 that the CLC instruc

tion was used before the ADC instruction.
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Example <4-2. A Program to add two numbers

Object: Add the numbers stored in locations $00FC and $00FD

sum in location J

10 ADD

11

12

13

14

CLC

LDA

ADC

STA

RTS

&00FE.

+NUM1

+NUM2

+SUM

;CLEAR THE CARRY FLAG BEFORE ADDING.

;FIND THE FIRST ADDEND IN NUM1.

;ADD IT TO THE SECOND ADDEND.

;STORE THE ANSWER IN SUM.

. Store the

cooo

C001

C003

C005

C007

18

A5 FB

65 FC

85 FD

60

The exercises at the end of the chapter will provide you with additional prac

tice in adding binary numbers. A computer-assisted instruction (CAI) pro

gram will allow you to input numbers in hexadecimal, display them in binary,

find and display their sum in binary, and display the contents of the P register

after the addition. Ifyou need practice with addingbinary numbers, you may

wish to try some of the exercises now.

Example 4-3 illustrates a binary addition when the sum exceeds $FF. The

sum is $11B. Observe that the number found in the accumulator will be $1B.

The carry flag is set after the addition, however, indicating that the sum

exceeded $FF. Taken together, the number in the accumulator and the value

of the carry flag indicate that the sum is $11B. This sum cannot be contained

in one byte.

Example 4-3. Adding Numbers Whose Sum Exceeds $FF

Find the sum of$A5 and $76. Assume the carry is clear before the addition.

Solution:

Hexadecimal

0

$A5

$76

= $1B

1

Binary !

0

10100101

01110110

= 00011011

1

Symbi

C

M

A

- A

- C

If the sum of two numbers exceeds $FF, how can you use the information

provided in the carry flag to obtain the correct answer? The solution is shown

in the program in Example 4-4. You use a second ADC instruction, add $00,

and store the result in another byte of memory. Notice in the program in

Example 4-4 that the carry flag is not cleared before the second ADC instruc

tion. Thus, if any carry occurs when the two numbers are added, the carry

will be added to zero and it will appear in the second sum. If this program
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were executed using the numbers in Example 4-3, then $1B will be found in

SUMLO and $01 will be found in SUMHI, indicating that the complete answer

is $11B. If a sum is less than $FF, then $00 will be found in SUMHI.

Example 4-4. Adding Single-Byte Numbers and Saving the Carry

Object: Add two numbers and store the result. Store any carry from this sum

in another location.

;CLEAR THE CARRY FLAG BEFORE ADDING. C000 18

;GET FIRST ADDEND. C001 A5 FB

;ADD IT TO THE SECOND ADDEND. CO03 65 FC

;STORE THE EIGHT-BIT ANSWER. C005 85 FD

;TO SAVE THE VALUE OF THE CARRY FLAG, CO07 A9 00

;FIND (0 + 0 + C) AND C009 69 00

;STORE THE RESULT IN SUMHI. CO0B 85 FE

C00D 60

10 ORG

11

12

13

14

15

16

17

CLC

LDA

ADC

STA

LDA

ADC

STA

RTS

+NUM1

+NUM2

+SUMLO

#00

#00

+SUMHI

V. Multiple-Byte Addition

It should be obvious that in many applications you will be dealing with

numbers that are too large to be represented with only eight bits. These

numbers are represented with two bytes. The largest whole number that can

be represented with two bytes is 65,535. The number 12,345 is $3039, so 12,345

would be represented by storing $39 in the least-significant byte (LSB) and $30

in the most-significant byte (MSB). If the application involves still larger

numbers, then each number must be representedby three bytes. The largest

three-byte number is 16,777,215 ($FFFFFF).

When two or more bytes are used to represent numbers, then multibyte

arithmetic is required. Two bytes are used to store each addend, and two bytes

are used to store the sum. Example 4-5 illustrates such a sum, and a program

to perform a double-byte addition is given in Example 4-6. It is important to

Example 4-5. Calculating a Double-Byte Sum

Find the sum of $30D9 and $1234. Assume the carry flag is clear.

Solution:

Hex Binary Symbolic Hex Binary Symbolic

0

$D9

$34

= $0D

1

Therefore,

0

11011001

00110100

= 00001101

1

the sum is $430D.

C

A

M

A

c —'

1

$30

$12

= $43

0

1

00110000

00010010

= 01000011

0

t

A

M

- A

- C



11 START

12

13

14

15

16

17

18

CLC

LDA

ADC

STA

LDA

ADC

STA

RTS

+NUM1LO

+NUM2LO

+SUMLSB

+NUM1HI

+NUM2HI

+SUMMSB
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observe that the carry flag is not cleared between the first and second addition.

Since there is a carry from the sum of the least-significant bytes, clearing the

carry flag would result in an incorrect sum. When performing multibyte

arithmetic, the carry flag is cleared only before the first addition.

Example 4-6. A Program to Add Two-Byte Numbers

Object: Add the two-byte number stored at $00FC and $00FD to the two-

byte number stored at $00FE and $00FF. Store the two-byte result in locations

$0002 and $0003. For all numbers, the least-significant byte is stored in the

location with the smallest address.

;CLEAR CARRY BEFORE FIRST ADD. C000 18

;GET LSB OF FIRST NUMBER. C001 A5 FB

;ADD LSB OF SECOND NUMBER. CO03 65 FD

;STORE IN LSB OF SUM. C005 85 02

;GET MSB OF FIRST NUMBER. C007 A5 FC

;ADD CARRY AND MSB OF NUM2. CO09 65 FE

;STORE SUM IN MSB OF SUM. CO0B 85 03

C00D 60

After studying Examples 4-5 and 4-6, you should see that the only point

in having an add with carry (ADC) instruction is to provide for the possibility

of multibyte addition. If you always restrict yourself to adding eight-bit

numbers, then the carry flag is unnecessary, since you will never use it to pro

vide a carry to a more significant byte.

VI. The SBC Instruction

The carry flag, C, is also used in the subtraction instruction, but in a more

subtle way than you might expect. The carry flag canhave two values, zero

or one. The complement of the carry flag, designated by C, has the binary value

opposite to_that found in the carry flag. Thus, if C = 1 then C = 0, and if C

= 0 then C = 1. It maybe helpful to think of the complement of the carry flag

as a borrowflag, although you should be aware that there is not a borrow flag

in the P register.

We are now ready to define the SBC instruction:

• The SBC instruction subtracts the numberMin a memoryjpcation from the number

A in the accumulator. The complement of the carry flag, C, is also subtracted from

the number in the accumulator. The result is stored in the accumulator.

• Symbolically, the SBC instruction is written

A-M-C-A

where M and A are eight-bit numbers and C is a one-bit number.

• After execution of the SBC instruction, the carry flag will be cleared (indicating a bor

row) if a larger number is subtracted from a smaller; otherwise, it will be set.

You can see from this definition that if the carry flag is set after a subtrac

tion, no borrow was required. If the carry flag is cleared after a subtraction,



VI. The SBC Instruction 65

the need to borrow is indicated. You can also see that if you are subtracting

two eight-bit numbers with the SBC instruction, the carry flag should be set

before subtracting. Example 4-7 illustrates a subtraction.

Example 4-7. Subtracting Two Eight-Bit Numbers

Assume the number $A5 is in the accumulator and the number $5F is in

the memory location referenced by the SBC instruction. Also assume the carry

flag is set. Find the result of the SBC instruction.

Solution:

Hex

$A5

$5F

0

= $46

1

Binary

10100101

01011111

0

= 01000110

1

Symbolic

A

M

C

- A

- C

Aprogram to perform a subtraction is given in Example 4-8. Notice that the

carry flag is set before the SBC instruction. The number in location $00FB is

the minuend, the number in location $00FC is the subtrahend, and location

$00FD stores the difference. We will return to this program in the exercises

at the end of the chapter to obtain practice with binary subtraction.

Example 4-8. A Program to Subtract Two Numbers

Object: Subtract the number in zero-page location $FG from the number in

zero-page location $FB. Store the result in zero-page location $FD.

10 START SEC ;SET CARRY BEFORE SUBTRACTING. C000 38

11 LDA +MINUND ;FETCH THE MINUEND. CO01 A5 FB

12 SBC +SBTRND ;SUBTRACT THE SUBTRAHEND. C003 E5 FC

13 STA +DIFF ;STORE THE DIFFERENCE. C005 85 FD

14 RTS C007 60

Example 4-9 illustrates a subtraction that results in a borrow. If you try

binary subtraction, it is likely that you will have difficxilty, especially in cases

that require a borrow. It may be helpful to subtract in the same way the

microprocessor subtracts. Begin by complementing the subtrahend (that is,

change each of the bit values of the subtrahend), and add one to the number

so obtained. The result obtained by complementing a number and adding

one is called the two's complement of the number. Adding the two's comple

ment of the subtrahend to the minuend will give the desired result for sub

traction. Example 4-9 also illustrates how to find a difference by two's-

complement addition.



66 4DArithmetic Operations In Assembly Language

The two's-complement addition is, in fact, how the 6510 subtracts. Before

the subtraction, the SEC instruction sets the carry flag. The subtrahend is

fetched from memory, complemented, and the carry flag is added to form

the two's complement. This result is added to the minuend to give the dif

ference. In this way, circuitry that performs addition on the 6510 can also be

used to perform subtraction. Two's-complement addition is also a good

technique for human beings to use to subtract binary numbers. Observe in

Example 4-9 that the carry flag is dear after the two's-complement addition

(subtraction).

Example 4-9. Subtraction Resulting in a Borrow

Subtract $7F from $3A. Assume the carry flag is set before the subtraction.

Solution:

Hex

$3A

$7F

0

= $BB

0

Ordinary Subtraction

Binary Symbolic

00111010 A

01111111

0

= 10111011

0

M

C

- A

- C

Two's-complement Subtraction

Hex Binary Symbolic

$3A 00111010 A

$80

1

= $BB

0

T

10000000

1

= 10111011

0

■f

M

c

- A

- C

Try the two's-complement approach for yourself, using the problem in

Example 4-7.

VII. Multiple-Byte Subtraction

Numbers larger than $FF must be represented with two or more bytes.

When such numbers are subtracted, corresponding bytes of the minuend

and the subtrahend are operated onby the SBC instruction starting with

the least-significant byte (LSB) and ending with the most-significant byte

(MSB). The carry flag is set with the SEC instruction before the LSBs are

combined. After that, the carry flag is not modified with the SEC or CLC

instruction; rather, it is the SBC instruction itselfthat sets or clears the carry

corresponding to a "no borrow" or "borrow" situation, respectively.

Example 4-10 illustrates a program that subtracts one two-byte number

from another two-byte number. It should be compared with the two-byte

addition program given in Example 4-6.
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Example 4-10. A Two-Byte Subtraction Program

Object: Perform a two-byte subtraction and store the two-byte difference.

11 START

12

13

14

15

16

17

18

SEC

LDA MINLO

SBC SUBLO

STA DIFFLO

LDA MINHI

SBC SUBHI

STA DIFFHI

RTS

;SEC IS SAME AS CLEAR BORROW. C000 38

;GET LSB OF MINUEND. C001 AD FA 02

;SUBTRACT LSB OF SUBTRAHEND. C004 ED FC 02

;RESULT INTO LSB OF DIFFERENCE. C007 8D FE 02

?FETCH MSB OF MINUEND. C00A AD FB 02

;SUBTRACT BORROW AND SUBTRAHEND. C00D ED FD 02

;RESULT INTO MSB OF DIFFERENCE. C010 8D FF 02

C013 60

VIII. Decimal Mode Arithmetic*

Instead of representing numbers with one or more eight-bit binary numbers,

it is sometimes more convenient to use a slightly different representation,

called binary-coded decimal (BCD). In binary-coded decimal each decimal digit

is represented by a four-bit binary number. Table 4-3 illustrates this concept.

In binary-coded decimal, you will not see binary numbers such as 1010,1011,

and 1100 because they represent digits larger than nine, which do not exist

in the decimal system.

The time-of-day clock on the 6526 CIA chip uses the BCD representation

of numbers. This clock is organized into four registers for tenths of seconds,

seconds, minutes, and hours, accessed at locations $DD08 through $DD0B,

respectively. In each register, the time is stored as a BCD number. One reason

for using the BCD representation is that it is easier to write a program to display

a BCD number than a binary number. You cannot, however, PEEK at BCD

numbers and expect to get the correct time because the PEEK instruction

assumes it is dealing with an eight-bit binary number.

WhenBCD codes are being used, it is easier to think that each eight-bit loca

tion consists of two four-bit nibbles. In turn, each nibble represents one decimal

digit, following the scheme described in Table 4-3. Thus, each memory loca

tion contains two decimal digits, represented with BCD of course.

Table 4-3. Representation of binary-coded decimal (BCD).

Decimal Number Binary-Coded Decimal Number

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001
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If you are going to combine BCD numbers in arithmetic operations, then

an important modification in theADC and SBC instructions must occur. Why?

Because whenBCD numbers are added, you would like a carry from the low-

order nibble to the high-order nibble when the sum of these two nibbles ex

ceeds nine. Furthermore, you would like a carry from the sum of two bytes

when the sum exceeds 99. Contrast that with ordinary addition in which a

carry occurs when the sum exceeds $FF (255).

The 6510 microprocessor is capable of adding and subtracting BCD

numbers. Before BCD addition is used, the decimal-mode flag (D flag) in the

processor status register must be set with the SED instruction. To return to

binary addition and subtraction the decimal-mode flag is cleared with the CLD

instruction.

To summarize decimal-mode arithmetic:

• The D flag must be set with the SED instruction before the ADC or SBC

instruction.

• In decimal-mode addition, the carry flag will be set if the sum exceeds 99 in BCD;

otherwise, it will be cleared.

• In decimal-mode subtraction, the carry flag will be cleared if a larger number is

subtracted from a smaller number; otherwise, it will be set. Remember that the

complement of the carry flag is also subtracted.

Example 4-11 illustrates the addition of two BCD numbers that results in

a carry. Subtraction will be similar. Do not attempt to do two's-complement

subtraction in the decimal mode. First perform the subtraction in decimal, then

convert to BCD.

Example 4-11. Adding Two BCD Numbers

Add 34 and 87 in BCD. Assume the carry flag is cleared before the addition.

Solution:

Decimal

0

34

87

= 21

1

BCD

0

00110100

10000111

= 00100001

1

Symbolic

C

A

M

- A

- C

A program to add two numbers in the decimal mode is given in Example

4-12. It is identical to the program in Example 4-2, except the decimal-mode

flag is set before the ADC instruction and the decimal-mode flag has been

cleared after the addition. Although it is not necessary to use the CLD instruc

tion after a decimal-mode addition, it is good practice to do so. It should be

dear that decimal-mode subtraction is similar to decimal-mode addition, with



10 ADD

11

12

13

14

15

16

SED

CLC

LDA

ADC

STA

CLD

RTS

+NUM1

+NUM2

+SUM
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the SBC instruction replacing the ADC instruction. It should also be clear that

multibyte decimal-mode arithmetic is performed in exactly the same way as

in Examples 4-6 and 4-1, except that the SED instruction must precede the

arithmetic instructions, and it is good practice to conclude the program with

a CLD instruction.

Example 4-12. A Program to Add Two Numbers in the

Decimal Mode

Object: Add the BCD numbers stored in locations $FB and $FC. Store the

result in location $FD.

;SET THE DECIMAL MODE FLAG. CO00 F8

;CLEAR THE CARRY FLAG BEFORE ADDING. C001 18

;FIND THE FIRST ADDEND IN NUM1. C002 A5 FB

;ADD IT TO THE SECOND ADDEND. C004 65 FC

;STORE THE ANSWER IN SUM. CO06 85 FD

;CLEAR THE DECIMAL MODE FLAG. CO08 D8

C009 60

IX. Signed Number Arithmetic*

Chapter 1 noted that the only information understood by the computer con

sists of binary ones and zeros. A minus sign is obviously not a one or a zero;

it is a minus sign. Thus, the computer cannot recognize minus signs. How

is it possible to represent negative numbers without minus signs?

Recall the previously described concept of the two's-complement of a

number. The two's-complement of a number is obtained by changing each

of the bit values of the number and adding one to the number. For example,

consider the binary number 01011000 ($58). Its complement is 1010 0111 ($A7).

Its two's-complement is $A7 + 1 or 10101000 ($A8). Now add the number

$58 to its two's-complement $A8. Neglecting the carry you will get $00.

The sum ofa numberand its two's-complement is zero. Let Mrepresent an eight-

bit number, and let M represent its complement. Then (M + 1) is the two's-

complement of M, and we may represent the italicized statement with the

expression:

M + (M + 1) = 0

If the sum of two numbers is zero, then one number is the negative of the other.

Thus, the negative of M is (M + 1), the two's-complement of M.

Nowwe are ready to make some negative numbers for ourselves. The two's-

complement of zero is zero, so zero is neither positive nor negative. The two's-

complement of $01 is $FF, so $FF = -1 = -$01. The two's-complement of

$02 is $FE, so $FE = - 2 = - $02. We can continue this process until we get

to $7F (127). The two's-complement of $7F is $80, so $80 = -128 = -$7F.

Now we have run out of eight-bit numbers.
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The 256 eight-bit numbers have been divided into two groups:

• The 128 numbers from $00 to $7F (0 to 127) are positive.

• The 128 numbers from $FF to $80 (-1 to -128) are negative.

These facts are summarized in Table 4-4. (Although zero is neither positive

nor negative, for programming purposes it is convenient to group it with the

positive numbers.)

Table 4-4. Representation of signed numbers in binary and hexadecimal.

Decimal

-128

-127

-126

-5

-4

-3

-2

-1

0

+ 1

+2

+3

+4

+5

+ 126

+ 127

Binary

1000 0000

1000 0001

1000 0010

11111011

11111100

11111101

11111110

11111111

0000 0000

0000 0001

0000 0010

0000 0011

0000 0100

0000 0101

01111110

01111111

Hexadecimal

$80

$81

$82

$FB

$FC

$FD

$FE

$FF

$00

$01

$02

$03

$04

$05

$7E

$7F

Notice that the two groups of numbers have one significant difference. The

numbers in the first group all have a zero in bit seven, while the numbers in

the second group all have a one in bit seven. When working with signed

numbers (integers), a one in bit seven will indicate a negative number. This is why

bit seven is often called the sign bit, and this is why bit seven in the processor

status register is called the negative flag or the N flag. It indicates that an

arithmetic operation produced a negative number because it is set whenever

an operation produces a one in bit seven, the sign bit.

How do you add and subtract signed numbers? Exactly as you would un

signed numbers. The programming examples given in this chapter work

equally well for signed or unsigned numbers. The interpretation of a number

as a signed number is made by the programmer rather than the program. The

sign of the answer is always available in the N flag of the processor status

register, where it can be tested with either of two branch instructions. This
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will be explained in Chapter 6. (Decimal-mode arithmetic is an exception. It

is more difficult to do signed-number arithmetic in the decimal mode, and

we will not pursue this topic further.)

To handle numbers larger than 127 or smaller than -128, two or more bytes

are used to represent the numbers. Bit seven in the most-significant byte of

the number is interpreted as the sign of the number. It is possible to repre

sent integers from -32,768 to +32767 with two bytes.

There is one complicating factor that remains to be discussed. Refer to Table

4-4 to follow the discussion. Suppose you add 5 to 125. Both of these are

positive numbers. Adding 5 to 125 gives 130. Converting 130 to hexadecimal

gives $82. $82 represents a binary number with a one in bit seven; hence, it

is negative. In fact, $82 represents -126. We have added two positive numbers

and obtained a negative. It is clear that we have a problem.

If the sum of two positive numbers exceeds 127, there will be a carry from

bit six to bit seven, the sign bit, producing an erroneous result. The sum

overflowed into the sign bit, producing an overflow error. In this situation the

overflowflag, V, in the processor status register will be set. Like the N flag, the

V flag can be tested with branch instructions. TheV flag is used to signal that

a signed-number arithmetic operation has gone awry.

The overflow flag is also set when the sum of two negative numbers is less

than -128. For example, add - 2 ($FE) to -128 ($80). The sum really is -130,

but you obtain $7E, which is 126 (as you can see from Table 4-4). In summary,

• An overflow occurs and the V flag is set when a sum or difference is either larger

than 127 or more negative than -128.

• Whenever an overflow occurs, the interpretation of the result as a signed

number is no longer correct.

• The V flag canbe cleared before an arithmetic operation with a CLVinstruction.

For more information about signed-number arithmetic, consult the

references at the end of Chapter 1.

X. The JSR and RTS Instructions

The concept of a subroutine is probably familiar to you from your work with

the BASIC programming language. We will postpone a detailed discussion

of subroutines until Chapter 9. The exercises at the end of this chapter will

make use of subroutines, however, so it is useful to introduce the calling and

return instructions at this point.

You have already been introduced to the RTS instruction. It is analogous

to the RETURN command in BASIC. We have used the RTS instruction at

the end of our machine-language subroutines to return control to the BASIC

interpreter after a SYS command. Machine-language subroutines can also be

called from machine-language programs. These subroutines must also end

with the RTS instruction. The RTS instruction is a single-byte instruction (op

code $60) that uses only the implied addressing mode.
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To call a machine-language subroutine from a machine-language program

the JSR instruction is used. It is analogous to the GOSUB command in BASIC.

JSR is a three-byte instruction that uses the absolute addressing mode. The

first byte of the instruction is the op code ($20), and the second and third bytes

are the address of the location of the first program byte in the subroutine.

Recall that an address consists of a low-order byte called the ADL and a high-

order byte called the ADH. The JSR instruction requires that the address be

ordered with the ADL first and the ADH last. Thus, if a subroutine is located

at $FEDC, the complete JSR instruction is

20DCFE

Refer to Example 4-13 to see how the JSR instruction is written in assembly

language. It has the form

JSR SUBPRO

where SUBPRO is the label of the starting address of the subroutine. This is

the first illustration of the case where the operand field of the assembly-

language program contains a label.

The subroutine must end with an RTS instruction. Execution of the RTS

instruction causes the program to return to the instruction in the main pro

gram following the JSR instruction that called the subroutine. Refer to the ex

ercises at the end of this chapter for illustrations of the JSR instruction, or refer

ahead to Chapter 9 for a detailed description of subroutine calls and returns.

XL Summary

The carry flag C is a bit in the processor status register (P register). C is set

when the ADC instruction produces a sum that exceeds $FF; otherwise, it

is cleared. The carry flag is also used in subtraction. C is cleared when a larger

number is subtracted from a smaller, indicating the necessity for a borrow;

otherwise, it is set.

The ADC instruction adds an eight-bit number in memory, the eight-bit

number in the accumulator, and the value of the carry flag and places the sum

in the accumulator. The carry flag should be cleared with the CLC instruc

tion before adding single-byte numbers. In multibyte addition, the carry flag

is cleared before the LSBs are added.

The complement of the carry flag serves as a borrow flag when subtracting.

The SBC instruction subtracts the borrow flag and a number in memory from

the number in the accumulator and stores the difference in the accumulator.

The carry flag should be set with the SEC instruction before subtracting single-

byte numbers. In multibyte subtraction, the carry flag is set before the LSBs

are subtracted.

The decimal mode (D) flag is set with the SED instruction before perform

ing arithmetic operations on BCD numbers. D must be cleared with the CLD

instruction before performing arithmetic operations on binary numbers.
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The N andV flags are used whenprogrammers choose to work with signed

numbers. When working with signed numbers, bit seven is the sign bit; one

means negative, zero means positive. The N flag may be used to indicate the

sign of a sum or difference. TheV flag maybe used to signal an overflow into

the sign bit, which destroys its validity.

Machine-language subroutines are called from a machine-language program

with a JSR instruction. Control returns to the calling program upon execu

tion of the RTS instruction.

XII. Exercises

Wehave developed a computer-assisted instruction (CAI) program to give

you some practice with binary numbers and addition and subtraction opera

tions. The hexadecimal codes of the computer-assisted instruction program

are listed in Table 4-5. A complete assembly-language listing of this program

is given in Appendix B. For the present, all you will need to do is load the

hexadecimal codes using the program in Example 2-8 and the information in

Table 4-5. Do this now, using the starting address of $C100 when Example

2-8 is RUN.

Table 4-5. Hexadecimal codes for the computer-assisted

instruction program.*

20 84 FF A9 0D 20 D2 FF 20 13 Cl 85 FB 20 13 Cl

85 FC 60 20 E4 FF C9 00 F0 F9 85 02 20 D2 FF A5

02 20 61 Cl 0A 0A 0A 0A 85 02 20 E4 FF C9 00 F0

F9 48 20 D2 FF 68 20 61 Cl 05 02 85 02 A2 06 A9

20 20 D2 FF CA DO F8 A2 08 A5 02 85 97 06 97 A9

00 69 30 20 D2 FF CA DO F4 A9 0D 20 D2 FF A5 02

60 C9 40 B0 04 29 OF 10 02 E9 37 60 08 48 08 68

A2 08 85 FE 68 48 85 02 A9 20 20 D2 FF CA DO F8

A2 08 06 02 A9 00 69 30 20 D2 FF CA DO F4 A9 0D

20 D2 FF A2 00 BD CF Cl 20 D2 FF E8 E0 11 90 F5

A2 08 A9 20 20 D2 FF CA DO F8 A2 08 06 FE A9 00

69 30 20 D2 FF CA DO F4 A9 0D 20 D2 FF A9 0D 20

D2 FF 68 28 60 08 48 20 E4 FF F0 FB 68 28 60 20

20 20 20 20 20 20 20 4E 56 20 42 44 49 5A 43 0D

*The starting address for this machine-language program is $C100. It can be loaded with the program

in Example 2-8, saved on disk with the program in Example 2-10, and reloaded from disk with the pro

gram in Example 2-11.

What does the computer-assisted instruction program do? It allows you to

input a byte of information in the form of two hexadecimal digits and it

displays the byte as a binary number. Then you input another byte by typing



74 4□Arithmetic Operations in Assembly Language

in two more hexadecimal digits. This byte is also displayed inbinary. The bytes

are stored in locations $00FB and $00FC. This much of the program is called

subroutine GETTWO, and it starts at $C100.

The computer-assisted program also contains a subroutine that will display,

in binary, the eight-bit code found in location $00FD and the flags in the pro

cessor status register. This subroutine is called DISPLAY, and it starts at

$C161.

We will use the computer-assisted instruction program in connection with

the programs in Examples 4-2,4-8, and 4-12. Refer to these programs and note

that they obtain their data from locations $00FB and $00FC, the same loca

tions that subroutine GETTWO in the computer-assisted instruction program

places numbers. Thus, the programs in Examples 4-2, 4-8, and 4-12 can be

called as subroutines to perform addition or subtraction using the numbers

obtained from the keyboard using subroutine GETTWO.

The programs in Examples 4-2,4-8, and 4-12 store their results in location

$00FD. This is the same location that the computer-assisted instruction pro

gram reads and displays. The DISPLAY subroutine allows you to check the

result of the arithmetic operation and the status of the various flags after the

ADC or SBC instruction is executed. Subroutine GETTWO and DISPLAY are

both listed in Appendix B.

Example 4-13 illustrates how subroutines GETTWO and DISPLAY are used

with the program in Example 4-2. The part of the program in Example 4-13

that is Example 4-2 is delineated by asterisks.

If you haven't already done so, load the computer-assisted instruction pro

gram using a starting address of $C100, the program in Example 2-8, and the

table of hexadecimal codes listed in Table 4-5. Next, load the program in Ex

ample 4-13 starting at location $C000.

Example 4-13. A Program to Demonstrate Addition

Object: Input eight-bit addends, display them, display the sum, and display

the P register.

10

11

12

13

14

15

16

17

18

19

20

ADD CLC

LDA +NUM1

ADC +NUM2

STA +SUM

RTS

;CLEAR THE CARRY FLAG BEFORE ADDING.

;FIND THE FIRST ADDEND IN NUM1.

;ADD IT TO THE SECOND ADDEND.

;STORE THE ANSWER IN SUM.

***************************************

START JSR GETTWO

JSR ADD

JSR DISPLAY

RTS

;GET TWO BYTES FROM KEYBOARD.

;ADD THE TWO BYTES.

;DISPLAY A AND THE P REGISTER.

;RETURN TO BASIC PROGRAM.

COOO

C001

C003

C005

C007

C008

C00B

C00E

con

18

A5

65

85

60

20

20

20

60

FB

FC

FD

00 Cl

00 CO

6C Cl

Once the codes in Table 4-5 have been loaded into memory, and the entire

program in Example 4-13 has been loaded into memory, then execute the
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program by calling it as a subroutine from BASIC. Notice that the first instruc

tion to be called is JSR GETTWO, located at $C008 (49160). This instruction

is labeled START in Example 4-13. Thus, you will use the

SYS 49160

commandfromBASIC to call the program in Example 4-13. Here is the BASIC

programyou use to access the machine-language program in Example 4-13:

10 SYS 49160

20 GOTO 10

RUN it when the machine-language programs are loaded.

Once the BASIC program is running, press any key that represents a hex

adecimal digit. You will see the number displayed on the screen. You do not

have to press RETURN. Press another key that represents a hexadecimal digit.

You have now entered the information for one byte, and the byte will be

displayed in binary. Enter another byte. After entering the second byte, the

addition program is called by the JSR ADD instruction and the bytes are

added. Finally, the result of the addition is displayed. The flags in the pro

cessor status register (P register) after execution of the arithmetic operation

are also displayed.

Here are some problems to try with the computer-assisted instruction pro

gram. Working them will give you a deeper understanding ofbinary numbers,

binary arithmetic, and the flags in the processor status register (P register).

1. Add the following pairs of numbers: ($A5, $5A), ($7F, $80), ($11, $EE) and

($A1, $5E). Do the sums produce a carry? Check the C flag. What is the status

of the Z flag after each sum? The N flag? What do you conclude is the result

of adding a number to its complement?

2. Add the following pairs of numbers: ($A6, $5A), ($7F, $81), ($EF, $11), and

($A3, $5D). Do these sums produce a carry? What is the status of the Z flag

after each sum? The N flag? What do you conclude is the result of adding a

number to its two's-complement? Under what circumstances is the Z flag set?

The N flag?

3. Add the following pairs of numbers: ($2F, $51), ($EE, $92), ($65, $1A), and ($7F,

$01). Can you tell under what circumstances the N flag is set?

4. Try some signed-number arithmetic. Refer to Table 4-4. Add $05 to $FB. Add

$05 to -3, which is $FD. Do you get +2? Add -5 ($FB) to +2 ($02). Do you

get -3? (Remember, -3 = $FD in two's-complement form.) Was the V flag

set in any of these cases?

5. Add +126 ($7E) and + 3 ($03). What is the value of the sign bit, bit seven (and

the N flag). Is 126 + 3 negative? What is the status of the overflow flag (V flag)

after this addition? Try adding -126 ($82) and -3 ($03). Note the sign of the

answer and the status of the V flag. When is the V flag set?

Practice some subtraction problems. Replace the addition subroutine in Ex

ample 4-13 with the subtraction routine found in Example 4-8. What op codes

must you change? Here are some problems to try.
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1. Subtract the second number from the first using these pairs of numbers: ($F0,

$6F), ($77, $3F), and ($FF, $7F). Predict the value of the carry flag before you

perform the subtraction. Were you right? Under what circumstances will the

Z flag be set in a subtraction? Try some problems to verify your hypothesis.

2. Repeat the problems given above but subtract the first number from the se

cond. Predict the value of the carry flag before you perform the subtraction.

3. Refer to Table 4-4 and make up some subtraction problems involving signed

numbers. Try them using the CAI program. Can you predict the values the

C and Z flags will have after the subtraction?

4. Make up some subtraction programs that will set the V flag.

If you have been successful with the last two problems, you have an ex

cellent grasp of the arithmetic operations and how they modify the flags in

the processor status register.

Modify the program in Example 4-13 once more so that you can do the

decimal-mode arithmetic program in Example 4-12. To do this you will have

to move the instructions on lines 17-20two bytes higher up inmemory to make

room for the op codes of the SED and CLD instructions. Try these problems:

(88,22), (66,33), (99,1), and (23,32). When is the carry flag set? Is the Z flag

set when the result is zero?

Invent some problems to discover when the N, Z, and Vflags are set. Here are

two additional programming problems to try.

1. Write a program to subtract, in the decimal mode, the number in location $00FC

from the number in location $00FB. Store the result in $00FD and clear the

decimal mode.

2. Write a subroutine that increments a two-byte BCD number by one each time

the subroutine is called. Routines similar to this are used to count external

events, such as people moving through a turnstile, cartons passing on a con

veyor belt, or pulses coming from a Geiger counter.



Logic Operations in

Assembly Language

I. Introduction

Everyone understands that a computer must be able to perform arithmetic

operations, but the use of logic operations is less intuitive, at least for the begin

ning assembly-language programmer. In this chapter, you will see that the

three logic operations are used extensively in programming complex chips

like the SID and VIC. If you have written graphics or music programs in Com

modore 64 BASIC, then you may already be familiar with two logic opera

tions, AND and OR. The purpose of this chapter is to introduce you to the

three logic operations available to the assembfyvlanguage programmer,

namely, AND, OR, and EXCLUSIVE OR. These logic operations correspond

to the three 6510 assembly-language instruction mnemonics AND, ORA, and

EOR, respectively.

The logical descriptions and the op codes of these instructions are given in

Table 5-1. Notice the symbols that are used for the logic instructions:

AND =

ORA -

EOR =

Table 5-1.

Mnemonic

AND

ORA

EOR

A

V

V

Op codes for the instructions used in

Logical

Description ]

AAM-A

AVM-A

AVM-A

Chapter 5.

Op Codes for Each Addressing Mode

Immediate Absolute Zero Page

$29

09

49

$2D

0D

4D

$25

05

45

(In some literature, a dot is used for AND, a plus sign for OR, and a circled

plus sign for the EXCLUSIVE OR.) For simplicity, we will confine ourselves

to the use of the three addressing modes listed in Table 5-1. Like arithmetic

77
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operations, logic operations involve two numbers. One of the numbers in

volved in the logic operation is in the accumulator (A) and the other is in

memory (M). We begin by defining each of the three operations; next we will

showhowthe instructions are used in programs, and finally we will illustrate

some applications.

II. The AND, ORA, and EOR Instructions

When two one-bit numbers are combined in an operation such as ad

dition, subtraction, and a logical AND, there are four possible bit com

binations that can occur and must be considered. The four unique bit

combinations are

0 0

0 1

1 0

1 1

Refer to Table 5-2 to see that the result of the AND instruction for each of the

four possible one-bit operations is defined in the third column. You can see

that the result of an AND operation is one only if the bits being ANDed are

both one; otherwise, the result is zero.

Table

A

0

0

1

1

5-2. Definitions

AND

M

0

1

0

1

AAM

0

0

0

1

of the logical operations.

A

0

0

1

1

ORA

M

0

1

0

1

AVM

0

1

1

1

A

0

0

1

1

EOR

M

0

1

0

1

AVM

0

1

1

0

This fact is related to the way humans think, and it may be demonstrated

with an English-language statement. An AND statement such as

"She owns a car and she owns a computer."

is true (one) only if both "owns a car" and "owns a computer" are true (one).

Otherwise, it is false (zero).

Of course, the 6510 microprocessor in the Commodore 64 operates on eight-

bit numbers rather than one-bit numbers. Corresponding bits of the two

numbers combined in the AND operation are treated exactly as defined in

Table 5-2. This is illustrated in Table 5-3, where the AND operation is illus

trated for two eight-bit numbers. Notice once again that corresponding bits

of the number in the accumulator (A) and a number in memory (M) are com

bined using the definition in Table 5-2.

Tables 5-2 and 5-3 also define the ORA and EOR instructions. Carefully

study Tables 5-2 and 5-3 and you will observe that:

• The result of anAND instruction is one only if both bits are one; otherwise, the

result is zero.
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• The result of an ORA instruction is zero only if both bits are zero; otherwise,

the result is one.

• The result of an EOR instruction is one only if the bits have different values;

otherwise, the result is zero.

The latter two facts may also be demonstrated with English-language

statements. The statement

''I have a VIC 20 or a Commodore 64."

is false (zero) only if both "have a VIC 20" aind "have a Commodore 64" are

false (zero.) Is the statement false if I ownboth machines? Also, the statement

"It is Tuesday or it is Wednesday."

is true (one) if "it is Tuesday" is true (one) and "it is Wednesday" is false

(zero), or vice versa. The statement is false (zero) if both components are false

(it is neither Tuesday nor Wednesday) or both are true (an impossible situa

tion). "Or" is used both inclusively and exclusively in our language.

Table 5-3. Examples

AND

. A 11001010

A M 10101100

-A 10001000

of eight-bit logical operations.

ORA

VA 11001010

M 10101100

-A 11101110

VA

■M

-A

EOR

11001010

10101100

01100110

Just as in addition and subtraction, the result of an AND, ORA, or EOR in

struction is placed in the accumulator.

Complementation is another logical operation. To complement a number,

all of its bit values are changed. In the last chapter, you complemented a

number and then added one to form the two's-complement of the number

in order to do signed-number arithmetic. You should understand that the

complement of a number and the two's-complement of a number are different

numbers: they differ by one.

The 6510 instruction set does not include a complement instruction (called

NOT in some instruction sets). How can the 6510 complement a number?

Notice that if a bit is EXCLUSIVE ORed with one, then the result is the comple

ment of the bit. Refer to Table 5-2 and observe that

0 EOR 1 = 1

1 EOR 1 = 0

Thus, an EOR with 1 complements the bit. To complement an eight-bit number,

it is EORed with $FF. That is,

M EOR $FF = M

where we have used "M" to symbolize the complement of "M."

The exercises at the end of the chapter will provide you with experience

using the logic instructions AND, ORA, and EOR. You must be well-

acquainted with these instructions before you can see how to use them. We

turn next to several illustrations of these instructions in programs.
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III. Simple Programs to Illustrate the Logic Instructions

The program in Example 5-1 illustrates the use of an AND instruction in

a program. The programANDs the number in location $00FB with the number

in $00FC and stores the result in location $00FD. These are the same locations

used by the computer-assisted instruction (CAI) program introduced in

Chapter 4. The exercises at the end of this chapter are designed to use the pro

grams in Examples 5-1 to 5-3 and the CAI program to allow you to gain exper

ience with the logical instructions.

Example 5-1. A Program to Demonstrate the AND Instruction

Object: AND the numbers in locations $00FB and $00FC

10 BEGIN LDA +NUM1 ;GET THE FIRST NUMBER. C000 A5 FB

11 AND +NUM2 ;AND IT WITH THE SECOND. C002 25 FC

12 STA +RESULT ;STORE THE RESULT. CO04 85 FD

13 RTS C006 60

The programs in Examples 5-2 and 5-3 are identical to the program in Ex

ample 5-1, except that they substitute the ORA andEOR instructions, respec

tively, for the AND instruction.

Example 5-2. A Program to Demonstrate the ORA Instruction

Object: ORA the numbers in locations $00FB and $00FC

10 BEGIN LDA +NUM1 ;GET THE FIRST NUMBER. C000 A5 FB

11 ORA +NUM2 ;OR IT WITH THE SECOND. C002 05 FC

12 STA +RESULT ;STORE THE RESULT. C004 85 FD

13 RTS C006 60

Example 5-3. A Program to Demonstrate the EOR Instruction

Object: EOR the numbers in locations $00FB and $00FC.

10 BEGIN LDA +NUM1 ;GET THE FIRST NUMBER. C000 A5 FB

11 EOR +NUM2 ;EXCLUSIVE OR IT WITH THE SECOND. C002 45 FC

12 STA +RESULT ;STORE THE RESULT. C004 85 FD

13 RTS C006 60

How do the logic instructions modify the flags in the processor status

register? Recall that the ADC and SBC instructions made extensive use of and

modified the carry flag. Also remember that when doing signed-number
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arithmetic, the V flag was of considerable importance. The logic instructions

(AND, ORA, and EOR) do not modify the carry flag (C) or the overflow flag

(V). On the other hand,

• If the result of a logic instruction is zero, then the Z flag will be set; otherwise,

it will be cleared.

• If the result of a logic instruction has a one in bit seven, the most-signficant bit,

then the N flag will be set; otherwise, it will be cleared.

If an instruction modifies a flag in the P register, this fact is indicated in the

last column of the instruction set summarized in Table 2-1. Refer to Table 2-1

to confirm the fact that the logic instructions modify the N and Z flags. You

can also verify these facts using the CAI program and the exercises at the end

of this chapter.

IV Using the Logic Instructions

The ORA and AND instructions are used to set or clear specific bits in a

memory location without affecting the other bits in the same memory location.

For example/suppose we wish to select the bit-mapped mode (BMM) of

the VIC chip. In this mode, each bit in an 8K block of memory corresponds

to a pixel (picture element) on the screen. In the bit-mapped mode, the screen

consists of 320 (horizontal) by 200 (vertical) pixels, giving a total of 64,000 pic

ture elements. Since one byte of memory can control eight pixels, we require

8,000 bytes of memory to control the 64,000 pixels. In this mode, the Com

modore 64 has the highest resolution (most pixels) and the bit-mapped mode

is ideal for detailed graphics. See Chapter 11 for more details.

To select the bit-mapped mode, bit five in VIC register $11 must be set. To

return to the character display mode, the same bit must be cleared. The pro

gram in Example 5-4 illustrates how an ORA instruction sets a bit, bit five in

location $D011. Setting this bit in register $11 of the VIC chip selects the bit

mapped mode. When the operand of the ORA instruction is written in binary,

it is easy to see which bit we wish to set and which bits we do not want to

modify. If the program is executed, you will see "garbage'' because you have

not put any useful information in the memory locations mapped onto the

screen.

Example 5-4. Setting a Bit with an ORA Instruction

Object: Switch on the bit-mapped mode.

10 ORIGIN LDA #$20 ;$20 = 00100000, BIT 5 IS SET. C000 A9 20

11 ORA VIC11 ;OR $20 WITH REGISTER 11 IN VIC. C002 0D 11 DO
12 STA VIC11 ;STORE RESULT IN VIC CHIP. C005 8D 11 DO
13 RTS C008 60

The program in Example 5-5 turns off the bit-mapped mode by clearing bit

five in register $11 of the VIC chip. Notice that anAND instruction was used.
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When the operand of the AND instruction is written in binary, it is easy to

see which bit we wish to clear and which bits we do not wish to modify.

Example 5-5. Clearing a Bit with the AND Instruction

Object: Switch off the bit-mapped mode.

10 ORIGIN LDA #$DF ;$DF » 11011111, BIT 5 IS CLEAR. C009 A9 DF

11 AND VIC11 ;AND $FD WITH REGISTER 11 IN VIC. C00B 2D 11 DO

12 • STA VIC11 ;STORE RESULT IN VIC CHIP. C00E 8D 11 DO

13 RTS . C011 60

First execute the program in Example 5-4 using the SYS 49152 command

in BASIC. The screen will change. Then run the program in Example 5-5 using

the SYS 49161 command. You will not be able to see this command as it is

entered, but enter it anyway. After the program executes, you will be back

in the normal screen mode, andyou can see that you entered the correct SYS

49161 command.

It is possible to accomplish the objectives given inExamples 5-4 and 5-5 with

an EOR instruction. Refer to Example 5-6 where the value ofbit five of register

$11 in the VIC chip is switched using anEOR instruction, changing the mode.

Execute this program with a SYS 49170 command. Execute it again with the

SYS 49170 command. Each time this routine is called, bit five in the VIC chip

register $11 is switched. This would be a useful routine if you are switching

back and forthbetween the bit-mapped mode and a text-filled screen. Notice

that successive applications of the EOR instruction cause a bit to toggle back

and forth between zero and one.

Example 5-6. Switching a Bit with the EOR Instruction

Object: Toggle the bit-mapped mode.

10 ORIGIN LDA #$20 ;$20 = 00100000, BIT 5 IS SET. C012 A9 20

11 EOR VIC11 ;EOR $20 WITH REGISTER 11 IN VIC. C014 4D 11 DO

12 STA VIC11 ;STORE RESULT IN VIC CHIP. C017 8D 11 DO

13 RTS C01A 60

We can summarize our results after making this definition:

• A bit is set if it has a value of one.

• A bit is clear if it has a value of zero.

To summarize:

• A specific bit (or bits) in a memorylocation maybe set by ORAing the number

in the memory location with a number with a one (or ones) in the bit (or

bits) to be set.

• A specific bit (or bits) in a memory location may be cleared by ANDing the

number in the memory location with a number with a zero (or zeros) in the

bit (or bits) to be cleared.
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• A specific bit (or bits) in a memory location may be switched by EORing the

number in the memory location with a number with one (or ones) in the bit (or

bits) to be switched.

Of course, after the logic operation is performed, the number must be stored

(STA) in the memory location to be modified.

These various forms of bit manipulation work because ORAing a bit with

one changes the bit to one, but ORAing a bit with zero leaves the bit un

changed. Likewise, ANDing a bit with zero changes the bit to zero, but

ANDing a bit with one leaves the bit unchanged. Finally, EORing a bit with

one switches the bit, but EORing a bit with zero leaves the bit unchanged.

Example 5-7 illustrates a case where two bits are cleared with an AND in

struction. One ofthem is subsequently set with anORA instruction. The VIC

chip can be made to look at various 16K banks of memory. This is useful if

you wish to switch between character sets or pictures displayed on the screen.

The switching is accomplished by setting and clearing bits zero and one in

an I/O port whose address is $DD00. For more details, refer to either the Pro

grammer's Reference Guide, page 102, or Chapter 11 in this book. Our purpose

here is simply to illustrate the use of the logic instructions.

Refer to Example 5-7 and observe that the AND $FC instruction clears bits

zero and one. Next the ORA $02 instruction sets bit one. The result is stored

in the I/O port. Only bits zero and one of this port are modified; all the other

bit values remain the same.

Example 5-7. Clearing and Setting Several Bits

Object: Select bank one ($4000 through $7FFF) for the VIC.

10 ORIGIN

11

12

13

14

LDA

AND

ORA

STA

RTS

PORTA

#$FC

#$02

PORTA

; READ

; CLEAI

THE I/O PORT.

* THE TWO LOW BITS.

;SELECT BANK 1 FOR VIC TO

; LOOK AT LOCATIONS $4000-$7FFF.

cooo

C003

C005

C007

C00A

AD

29

09

8D

60

00 DD

FC

02

00 DD

The process of clearing one or more bits of a given number is called masking.

The cleared bits are said to be masked. To mask the high-order nibble (most-

significant four bits) of a byte, it is ANDed with $0F (00001111). The number

$0F is called the mask. How would you mask the low-order nibble of a byte?

Choose $F0 (11110000) for the mask. How wouldyou mask the odd-numbered

bits? Choose $55 (01010101) for the mask.

The program in Example 5-8 illustrates a number of important concepts in

troduced in this and the preceding two chapters. Study this program carefully.

The concept of a mask is illustrated. Data transfer instructions are found on

the first three lines. A logic instruction and arithmetic instructions follow. The

program has a subroutine call, and it concludes with a return from subroutine

instruction.

The function of the program is to reajd and display one register of the time-

of-day (TOD) clock on the 6526 CIA chip. TheTOD clock keeps time in tenths

of seconds, seconds, minutes, and hours, requiring four memory locations,
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$DC08 through $DC0B. The time is kept in binary-coded decimal (BCD), de

scribed in Chapter 4. Thus, the four least-significant bits of location $DC09

contains the ones of seconds. The next three more-significant bits in the same

memory location represent the tens of seconds. Of course, the tens of seconds

will only advance to five, with nine in the ones of seconds, after which the

minutes counter increases and the seconds register returns to zero.

Example 5-8. A Program to Count Seconds

Object: Read and display the ones of seconds in the TOD dock.

10 ORG

11

12 HERE

13

14

15

16

17 •

LDA

STA

LDA

AND

CLC

ADC

JSR

RTS

#00

CLKTHS

CLKSEC

#$0F

#$30

CHROUT

;START THE CLOCK.

;GET SECONDS.

;MASK HIGH ORDER NIBBLE.

;ADD $30 TO CONVERT TO

;A C-64 CHARACTER CODE.

;KERNAL OUTPUT ROUTINE.

C000 A9

C002 8D

C005 AD

C008 29

C00A 18

C00B 69

C00D 20

C010 60

00

08

09

OF

30

D2

DC

DC

FF

The first two lines of the program in Example 5-8 start the clock. Writing

to the tenths-of-seconds location, CLKTHS, starts the clock. We chose to start

it at zero. The clock starts at the completion of the STA CLKTHS instruction.

In line 12, the seconds location of the clock is read with the LDA CLKSEC in

struction. We now have tens of seconds and units of seconds, in BCD, in the

accumulator. To display aBCD number, you handle one digit at a time. Thus,

we mask the high-order nibble, leaving only ones-of-seconds in the ac

cumulator. The masking is accomplished with the AND #$0F instruction.

You cannot just send a number to an output routine or a screen memory

location and have it displayed. The number must be representedby its screen

code or ASCII code (see Appendices E and F in the Commodore 64 User's Guide

that came with your computer). If you study the codes for the digits 0 through

9, you will see that they are 48 through 57 ($30 through $39). Thus, a single-

digit number, such as we now have in the accumulator, can be converted

either to a screen code or ASCII by adding 48 ($30). This is the purpose of the

CLC and the ADC #$30 instructions. Finally, we make use of a subroutine

in the Commodore 64 operating system to output the character to the screen.

Here is a short BASIC routine to call the program in Example 5-8:

1 SYS 49152 : REM START AND READ CLOCK.

2 PRINT "<H0M>" : REM TIME APPEARS UPPER LEFT.

3 SYS 49157 : REM READ THE CLOCK.

4 GO TO 2 : REM READ AND DISPLAY FOREVER.

Load both programs and RUN the BASIC program. You should see the

seconds ticking in the upper left-hand corner of the screen. Modify the pro

gram to read and display the tenths-of-seconds register whose address is
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$DC08. Displaying all four registers simultaneously is beyond the scope of

the material you have learned in the first five chapters, but we will return to

this topic later.

We conclude this section with a hypothetical problem that provides another

illustration of the use of the logic instructions. Assume we have several devices

connected to the user port on the Commodore 64. This port is accessed at loca

tion $DD01, and it will be symbolized by PORT. The hypothetical devices at

tached to this port are listed in Table 5-4. We would like to be able to detect
(1) whether a device has changed its state, and if so, (2) did it change from

one to zero, or (3) did it change from zero to one? Location PSTATS ($00FB)

will be used to store the prior-status nibble, that is, the binary values of the £our

bits at an earlier time. After testing for items (1), (2), and (3), the prior-status

nibble should be updated. Location FLIP ($00FC) will contain ones in each

bit that changed its status. Location OTOZ ($00FD) will contain a one in each

bit that changed from one to zero, and location ZTOO ($00FE) will contain

a one in each bit that changed from zero to one.

Table 5-4. Status information

Device

Smoke detector

Intrusion detector

Line voltage detector

Touch-sensitive detector

on the safe

for four input

Bit Number

0

1

2

3

devices.

Status Information

0=No smoke

1 = Smoke

0=Intruder detected

1=No intruder

0=Power failure

1=Power on

0=No touch

1=Touch

Example 5-9 is the solution to this problem. It is important to realize that

when a solution appears in a book, it probably did not simply emerge full

blown from the author's mind. A considerable amount of trial and error and

pendl-and-paper calculations by many hands take place before a final version

is reached. Space does not permit us to show how much work is involved

in finding the solution; only the solution is shown. Likewise, your under

standing of the solution will require some pencil-and-paper work. See the in

structions below that suggest how to verify that the program works.

Example 5-9. A Program to Detect State Changes

Object: Detect state changes on pins 0 - 4 of the user input port.

;READ THE PORT FOR FRESH DATA. CO00 AE 01 DD

;HOLD DATA IN X, USE DATA IN A. C003 8A .

;MASK HIGH ORDER NIBBLE. . C004 29 OF

;EOR WITH PREVIOUSLYOBTAINED DATA. C006 45 FB

10 ORG

11

12

13

LDX PORT

TXA

AND #$0F

EOR +PSTATS
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14

15

16

17

18

19

20

STA

AND

STA

EOR

STA

STX

RTS

+FLIP

+PSTATS

+OTOZ

+FLIP

+ ZTOO

+PSTATS

;SET ALL BITS THAT FLIPPED. C008 85 FC

;SET BITS FLIPPED FROM 1 TO 0. COOA 25 FB

;STORE RESULT. COOC 85 FD

;SET BITS FLIPPED FROM 0 TO 1. COOE 45 FC

;STORE RESULT. C010 85 FE

;UPDATE PREVIOUS STATUS BYTE. CO12 86 FB

C014 60

Note in Example 5-9 the use of the EOR instruction to detect changes in bit

values and the use of the AND instruction to mask the bits of interest. How

can you verify that the program works as advertised? Start by assuming the

number in the port was 00000110, corresponding to a normal state of affairs.

Only the low-order nibble is of interest, so work with the number 0110, and

assume it is in PSTATS. Next, assume that bit two changes to zero, indicating

a power failure (except for the computer), and that bit zero changes to one,

indicating the presence of smoke. Thus, the low-order nibble of the number

obtained from PORT is 0011. Starting at the beginning of the program and

using these two numbers, make the same calculations that the program makes

and verify that it works. Next to each instruction write the number in the ac

cumulator at the completion of the instruction. An alternative is to use the

debug or single-step mode of your assembler package and step through the

program, observing the contents of the accumulator after each step.

Table 5-5. Memory assignments for the program in Example 5-9.

Location Symbol Function

$DD01 PORT Input port for the devices in Table 5-4.

$00FB PSTATS Contains bit values previously read.

$00FC FLIP Contains ones for each bit that flipped.

$00FD OTOZ Contains ones for bits flipped from 1 to 0.

$00FE ZTOO Contains ones for bits flipped from 0 to 1.

V. Summary

The AND instruction combines corresponding bits in two eight-bit numbers

according to the following rule: if both of the bits are one, then the result is

one; otherwise, the result is zero. The ORA instruction operates on numbers

with this rule: if both of the bits are zero, then the result is zero; otherwise,

it is one. The EOR instruction combines bits with this rule: if the bits have

different values, then the result is one; otherwise, it is zero. A number may

be COMPLEMENTED by combining it with $FF in an EOR operation.

The ORA instruction is used to set bits, the AND instruction is used to

mask (clear) bits, and the EOR instruction is used to complement (switch)

bits. When executed, these instructions will set the Z flag if all eight bits

of the result are zero; otherwise, the Z flag will be cleared. The instruc

tions also set the N flag if they produce a result of one in bit seven; other

wise, the N flag will be cleared.
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VI. Exercises

It is important to have a strong intuitive feeling for the three logic in

structions. They should become as familiar to you as adding and sub

tracting. To help familiarize you with these three operations we, once

again, suggest the use of the computer-assisted instruction (CAI) program.

This program was used to give you practice adding and subtracting at the

end of the last chapter, and it can also be used in conjunction with Ex

amples 5-1 to 5-3 to provide practice with the AND, ORA, and EOR

instructions, respectively. The CAI program is listed in Appendix B, and

a listing of the hexadecimal codes was given in Table 4-5. Begin by loading

the CAI program into memory from either the tape or disk where you

saved it. Otherwise, load it from the hexadecimal codes in Table 4-5, using

the program in Example 2-8 and a starting address of $C100.

The program in Example 5-10 illustrates how the CAI subroutines are used.

The part of the program delineated by asterisks is Example 5-1. This part of

the program may be replaced by Example 5-2 or Example 5-3 to demonstrate

the ORA andEOR instructions, respectively. In fact, you have to change only

one op code to move from one logic instruction to the other, so only the code

at location $C002 need be changed to demonstrate all three logic instructions.

Example 5-10. A Program to Demonstrate the AND Instruction

Object: Display the operands and the result of the AND instruction. Also

display the flags in the processor status register.

10 .***************************************

11 LOGIC LDA +NUM1 ;GET THE FIRST NUMBER. C000 A5 FB

12 AND +NUM2 ;AND IT WITH THE SECOND NUMBER. C002 25 FC

13 STA +RESULT ;STORE THE RESULT. C004 85 FD

14 RTS C006 60
15 .*************•*•*****•*•**************

16 START JSR GETTWO ;GET TWO BYTES FROM KEYBOARD. C007 20 00 Cl

17 JSR LOGIC ;AND THE TWO BYTES. C00A 20 00 CO

18 JSR DISPLAY ;DISPLAY A AND THE P REGISTER. C00D 20 6C Cl

19 RTS ;RETURN TO BASIC PROGRAM. C010 60

Load the CAI program and the program in Example 5-10. Call the program

in Example 5-10 as a subroutine with this BASIC program:

1 SYS 49159

2 GO TO 1

Enter two hexadecimal digits to make one byte. The eight-bit number will be

displayed on the screen. Enter another two hexadecimal digits to make the

second eight-bit operand of the AND instruction. It too will appear on the

screen, followedby the result of the AND instruction. The contents of the pro

cessor flag register will also be diplayed. Pay particular attention to the Z and

N flags, since these are the flags that are modified by the logic instructions.
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Now that you have the program working, here are some exercises to try

using the AND instruction.

1. AND these pairs of numbers and note the result: ($00, $FF), ($01, $FF), ($02,

$FF), ($80,$FF). What is the result of ANDing a number with $FF? Which of

the previous problems set the Z flag? Why?

2. AND these pairs of numbers and note the result: ($A5, $5A), ($7F, $80). What

do you obtain when you AND a number with its complement? Why was the

Z flag set in both of these cases? What was the status of the N flag after each

of these operations?

3. The number $FF has a one in each bit. Whatnumber shouldyou choose to AND

with $FF to clear bit seven? Bit three? Bits seven and three? Try your answers

with the program in Example 5-10 to see if they are correct.

4. Which of these two problems will cause the N flag to be set after the AND

operation: ($7F, $80) or ($C6, $91)?

In the program in Example 5-10, replace the AND op code $25 with the op

code for the ORA instruction. Refer to Table 5-1 to choose the op code. Now

try these problems.

1. ORA the numbers in these pairs: ($00, $F5), ($00, $7F), ($00, $11). What is the

result of ORAing a number with zero? Which of the preceding problems set

the N flag? Why?

2. Combine these pairs of numbers with the ORA instruction: ($7F, $80), ($EE,

$11), ($A1, $5E). What is the result of ORAing a numberwith its complement?

3. The number $00 has zeros in all its bits. What number should you ORA with

$00 to set bit seven? Will the N flag be set or clear after this operation? What

number shouldyouORAwith $00 to set bit six? Bit five? Bit three and bit zero?

Try these problems using Example 5-10 modified to use the ORA instruction.

Replace the ORA op code with an EOR op code from Table 5-1. Try these

problems.

1. Combine these pairs of numbers in anEOR operation: ($00, $FF), ($A5, $FF),

($FF, $E3). Do you get the complement of a numberwhenyouEOR it with $FF?

2. Use the answers to the problems above to EOR anumberwith its complement.

What do you conclude?

3. What number should you EOR with $A7 to flip bit six? Bit five? Bits zero and

seven? Try it with the program in Example 5-10 modified to workwith theEOR

instruction.

Experiment with these programs until you can anticipate the result obtained

by combining any two numbers with an AND, ORA, or EOR instruction, and

until you can anticipate the N and Z flag values after the operation.

Here are some additional programming problems,

1. Assemble this program:

IDA CRA

AND #$FE

STA CRA
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where CRA has the address $DCOE. Locate the program starting at address

$C000. The effect of the program is to clear bit zero in the 6526 CIA control

register A. Clearing this bit will disable the keyboard by stopping a

counter/timer on the 6526 CIA. Execute the program from BASIC with a SYS

49152 command. Type some letters on the keyboard. What happens? Your

computer is now running out of your control. To regain control you must turn

off the power and then turn it on again.

2. Write a program to clear bit four in register $11 of the VIC chip, location $D011.

Also write a program to set this bit. What are the effects of running these

programs?

3. Write a program to enable sprites 5 and 1 and disable sprites 2 and 3. The sprite-

enable register is at location $D015. Each sprite is enabled by placing a one in

the corresponding position in the sprite-enable register. A sprite is disabled

by placing a zero in the corresponding position in the sprite-enable register.

Refer to the Commodore 64 User's Manual or the Programmer's Reference Guide

for additional details about creating sprites. Also see Examples 3-6 and 3-7.





Branches and Loops

I. Introduction

Without decision-making instructions, the computer would be a far less

versatile tool than it is. The "if...then../' type of decision is an important part

of almost all programs. For example, in a game program you might have a

decision of this type: iftwo sprites collide, then make an exploding noise. In

applications involving the computer as a controller we find decisions of this

type: zfthere are no cars in the left-turn lane, then do not turn on the left-turn

arrow. Decisions are at the heart of any control application, and the decision-

making instructions are of central importance to the material in this chapter.

In assembly language, the decision-making instructions are the branch instruc

tions, BCC, BCS, BEQ, BNE, BPL, BMI, BVC, and BVS. Refer to Table 6-1

for a brief description and the op code of each branch instruction.

Table 6-1. Op

Mnemonic

BCC

BCS

BNE

BEQ

BPL

BMI

BVC

BVS

codes for the branch instructions.

Description

Branch on carry clear (C=0)

Branch on carry set (C=1)

Branch on result not equal zero (Z=0)

Branch on result equal zero (Z = 1)

Branch on plus (N=0)

Branch on minus (N=1)

Branch on no overflow (V=0)

Branch on overflow (V=l)

Relative Addressing

Mode Op Code

$90

BO

DO

F0

10

30

50

70

Branch instructions in assembly language are very similar to the

IF...THENGOTO...

command inBASIC. (Although the "GOTO" maybe omitted in BASIC, its

use here illustrates the pointwe are trying to make.) This is how the IF.. .THEN

91
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GO TO... commandworks: Ifthe condition is met, then execution continues

at the line number that follows the "GO TO." If the condition is not met, ex

ecution continues with the command on the next line.

Likewise, in assembly language, a branch instruction tests a certain con

dition, namely, the status of ^ specific flag in the processor status register.

I/the condition is met, then the program branches (jumps) to another address

to continue execution. If the condition is not met, then execution continues

with the instruction following the branch instruction. The flags in the pro

cessor status register will, once again, be of considerable interest to us in this

chapter.

Instructions or commands in a BASIC program are identifiedby line numbers.

Consequently the object of the

IF...THENGOTO...

command is a line number, and the program branches to this line number.

Recall from our discussion in Chapter 1 that machine-language instructions

are identified by their location in memory, that is, their address. The program

counter, a 16-bit register in the 6510 microprocessor, stores the address of the

next program byte to be fetched from memory. A branch is effected by adding

a signed number to the program counter.

If you have previously used either BASIC or another programming

language, then you have probably worked with a programming structure

known as a loop. A loop allows a specific task to be repeated. Loop counter

variables keep track of the number oftimes the task has been accomplished.

In BASIC, the instructions that perform the task are frequently placed be

tween a

FOR I = 1 TO N

instruction and a

NEXT

instruction. In this case, the variable I serves as the loop counter, and N is

the number of times the task is to be performed.

A common practice in assembly language is to use the number in either the

X or Y register as a loop counter. Either the INX or INY instruction is used to

increment the loop counter. These instructions are analogous to the NEXT in

struction in BASIC. On the other hand, sometimes it is advantageous to decre

ment the loop counter using either a DEX or DEY instruction. Refer to Table

6-2 for a description of these instructions and their op codes.

It is also possible to increment or decrement the number in a memory loca

tion using the INC or DEC instructions, respectively. Thus, a loop counter

can be stored in memory as well as in a register in the microprocessor.

How does the loop end? One member of a group of instructions known

as a test instruction is often used in conjunction with a branch instruction

to terminate the loop. The test instructions include the CPX, CPY, CMP,

and BIT instructions. Refer to Table 6-2 for their op codes for three of the

simplest addressing modes.
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Table 6-2. Increment, decrement, and test instruction op codes.

Op Codes for Each Addressing Mode

Mnemonic Description Immediate Absolute Zero-Page Implied

INX

DEX

INY

DEY

INC

DEC

CPX

CPY

CMP

BIT

X+l-X

X-l-X

Y+l-Y

Y-l-Y

M+l-M

M-l-M

X-M

Y-M

A-M

(See text)

$E0

CO

C9

$EE

CE

EC

CC

CD

2C

$E6

C6

E4

C4

C5

24

$E8

CA

C8

88

You have many new instructions to learn in this chapter. The complexity

inherent in the loop structure demands greater programming skill than

straight line programming. The challenge of mastering these new instructions

will be rewarded with more interesting and powerful programs. We turn next

to a detailed and orderly description of these new instructions.

II. Reviewing the Flags

A review of the flags in the processor status register may be useful before

introducing the branch instructions. Only the C, Z, N, andV flags are rele

vant to this chapter. Refer to Chapter 4, Figure 4-1 in particular, and study

the diagram of the processor status register.

• The G (carry) flag is set whenever the result of an arithmetic operation generates

a carry. The C flag is cleared if the arithmetic operation does not generate a carry.

The C flag is also set or cleared with the shift and rotate instructions that will

be described in Chapter 7.

• The Z (zero) flag is set whenever execution of an instruction gives a result of

zero. This flag is cleared in the event of a nonzero result.

• The N (negative) flag is set whenever execution of an instruction generates a

one in bit seven; otherwise, it is cleared.

• The V (overflow) flag is used only when doing signed-number arithmetic. It

is set whenever an arithmetic operation produces a result greater than +127

or less than -128, indicating an overflow into the sign bit; otherwise, it is

cleared.

A flag is modified by an instruction if it is either set or cleared when the in

struction is executed. Refer to the last column in the instruction set summary

in Table 2-1 to determine which flags a particular instruction modifies. Ex

amples 6-1 and 6-2 will clarify these ideas.
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Example 6-1. Modifying Rags with the LDA Instruction

How does the LDA instruction modify the flags in the pnxessor status register?

Solution: Refer to the instruction set summary in Table 2-1 and observe that the

LDA instruction modifies both the Z and N flags. If the operand of the LDA in

struction is $00, then the Z flag will be set; otherwise, it will be cleared. If the

operand of the LDA instruction has a one in bit seven (codes $80 through $FF)

then the N flag will be set; otherwise, it will be cleared.

Example 6-2. Modifying Flags with the DEX Instruction

How does the DEX instruction modify the flags in the processor status register?

Solution: Refer to Table 2-1 and observe that the DEX instruction modifies the

Z and N flags. If the number in the X register is decremented to zero, then the Z

flag will be set; otherwise, it will be cleared. If, after it is decien^nted, the number

in the X register has a one in bit seven (numbers $80 through $FF), then the N

flag will be set; otherwise, it will be cleared.

This concludes our brief review of the flags.

III. The Branch Instructions

A branch instruction tests the value of a specific bit in the processor status

register. Table 6-1 indicates the condition that is tested by each of the eight

branch instructions. If the condition tested is met, then the program counter

is altered, and the branch is said to be taken. If the condition tested is not met,

then the program counter is not altered, and the branch is not taken. In the

latter case, the program continues by executing the instruction immediately

following the branch instruction.

A branch instruction is a two-byte instruction. The first byte is the op

code given in Table 6-1. The second byte of a branch instruction is inter

preted by the 6510 microprocessor as a signed number to be added to the

program counter if the branch condition is met. The second byte of a branch

instruction is called the offset. In other words, if the branch condition is

met, the offset is added to the program counter to determine the address

of the next program byte. Since the offset is regarded by the

microprocessor as a signed number, aforward branch is limited to 127 bytes,

and a backward branch is limited to -128 bytes. Refer to Chapter 4 for a

description of signed numbers. Because the change in the program

counter is always relative to the location of the branch instruction, the ad

dressing mode used by the branch instruction is called relative addressing.
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Recall from Chapter 1 that the program counter is incremented immediately

after the microprocessor fetches a program byte. Thus, by the time the pro

cessor is ready to add the offset to the program counter, the value of the

program counter corresponds to the address of the op code of the first in

struction after the branch instruction. It is very important to remember this!

This sequence of events is diagrammed in Figure 6-1.

OPERATION ADDRESS PROGRAM

I BUS COUNTER

FETCH

BRANCH

OP CODE

NO

FETCH

NEXT

OP CODE

$C005 $C006

- OFFSET

$C006 $C007

YES
PROGRAM_COUNTER

PROGRAM COUNTER

OFFSET

$C007 $C008

+ OFFSET

Figure 6-1. Flowchart of a branch instruction.

Assume the branch op code is in the memory location whose address is

$C005 (we will provide such an example in a moment). While the processor

fetches the branch op code, the program counter is alreadybeing incremented

to fetch the next byte of the instruction. The second byte of the branch instruc

tion is the offset. When the offset is fetched, the program counter is incre

mented again. The program counter now holds the address of the op code
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of the instraction/o/fowmg the branch instruction. Thus, the program counter

will be $C007. If the branch is to be taken, the processor now adds the off

set. Note that it is added to $C007, not to $C005 or $C006 where the branch

instruction is stored in memory. An offset of $05, for example, will cause the

microprocessor to fetch the next program byte at $C0QC; an offset of $F9 (- 7)

will cause the microprocessor to fetch the next programbyte at location $C000.

It is time to present some concrete examples. Refer to the program in Ex

ample 6-3 and its flowchart in Figure 6-2. The alarm on the time-of-day (TOD)

clock "sounds'' by setting bit two in the 6526 CIA interrupt control register

(ICR2). This register is located at $DC0D. Suppose our task is to wait until

the alarm sounds. The program in Example 6-3 accomplishes this task. Line

10 sets up the mask to isolate bit two. line 11 ANDs the mask with the number

in the ICR. If the alarm bit is still zero, the result of the ANDIRCREG instruc

tion will be zero. The BEQ OFFSET instruction will test the Z flag, find that

it is set, and the branch will be taken. The branch offset is $F9 (-7), so the pro

gram branches backward to the address labeled OFFSET. If the alarm bit is

set, then the result of the AND IRCREG instruction will be one, the Z flag

is clear, the branch will not be taken, and the program will continue with the

RTS instruction following the branch instruction. Example 6-3 uses the same

addresses as the diagram in Figure 6-1. A flowchart of the program in Example

6-3 is shown in Figure 6-2.

Example 6-3. A Program to Demonstrate a Branch Instruction

Object: Wait in a loop until the TOD dock alarm hit is set.

10 OFFSET LDA #$04 ;MASK TO ISOLATE BIT 2. C000 A9 04

11 AND IRCREG ;IS THE ALARM BIT SET? C002 2D 0D DC

12 BEQ OFFSET ;NO, Z = 1, BRANCH BACK TO OFFSET. C005 F0 F9

13 RTS ;YES, Z = 0, RETURN. C007 60

There are three other points worth mentioning about Example 6-3 before

moving on to other examples. First, the label of the instruction that is the

destination of the branch is found in the operand field of the assembly-language

program. Thus, in Example 6-3, the label OFFSET is in the operand field of

the BEQ instruction. This is standard assembly-language practice. The

assembler will calculate the correct offset when given this information.

Second, if you are assembling programs by hand, the offset is most easily

calculatedby starting with the programbyte immediately following the branch

instruction and counting $00, $01, $02,... forward until the destination of the

forward branch is reached. For a backward branch, start with the byte follow

ing the branch instruction and count $00, $FF, $FE, ... backward until the

destination of the backward branch is reached. Thus, in Example 6-3, start

counting backward with the byte located at $C007, and end with the byte at

$C000. Examples 6-4 and 6-5 illustrate the calculation of offsets.
Finally, in the program in Example 6-3, we have encountered our first pro

gram loop. The program waits in the loop, composed of the LDA #$04, the

AND IRCREG, and the BEQ OFFSET instructions, until the alarm bit is set.
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YES

Figure 6-2. Flowchart of the program in Example 6-3.

Example 6-4. Calculation of a Fbrward Branch

When a program reaches $C123, it must branch to $C18F if the N flag is set.
What instruction should be located at $C123 and $C124?

Solution: A branch-on-minus, BMI, instruction is required. The offset is

$C18F - $C125 = $6A. TheBMI op code $30 shouldbe located at $C123 and
the offset $6A should be located at $C124.



98 6□Branches and Loops

Example 6-5. Calculation of a Backward Branch

A BCS instruction is located at $C2FB. If the carry flag is set, the program

must branch backward to the op code located at $C2F0. What is the correct

offset for this backward branch?

Solution: The first op code after the BCS instruction is located at $C2FD.

$C2FD - $C2F0 = $0D. We need to branch -13 ($0D) bytes. The two's-

complement of $0D is $F3. $F3 is the correct offset. Recall that the two's-

complement is found by complementing the number and adding one.

We conclude this section with one more program listed in Example 6-6. The

subroutine GETIN is in the Commodore 64 operating system. Subroutines

in the operating system do not need to be written, they already exist in ROM,

and they can be called by any program. This subroutine reads the keyboard

buffer. If a key has been pressed, the subroutine returns with the character

in the accumulator. If a keyhas notbeen pressed, the subroutine returns with

the Z flag set. If the Z flag is set, then the programbranches backward to wait

for a key to be pressed. If a key is pressed, the program in Example 6-6 out

puts the character to the screen using the Commodore 64 operating system

subroutine CHROUT.

Example 6-6. A Program to Read the Keyboard and Output

the Character

Object: Output the characters typed on the keyboard.

;GET A CHARACTER FROM THE BUFFER. CO00 20 E4 FF

;WAIT FOR A NON-ZERO RESULT. CO03 F0 FB

;OUTPUT THE CHARACTER TO THE SCREEN. C005 20 D2 FF

;CLEAR THE OVERFLOW FLAG TO FORCE C008 B8

;A BRANCH TO LOOP FOREVER. CO09 50 F5

The really interesting feature of the program in Example 6-6 is the func

tion of the last two instructions. The 6510 instruction set does not include

an unconditional branch; however, by first clearing a flag and thenbranch

ing on the condition that the flag is clear, you can produce an uncondi

tional branch. Notice in Example 6-6 that we clear the V flag with a CLV

instruction and thenwe force a branch with the BVC GET instruction. Also

note that we have introduced an infinite loop, that is, there is no way to

escape from the loop created by the BVC GET instruction. The only way

to escape is by pressing the RUN/STOP and the RESTORE keys

simultaneously, producing a NMI-type interrupt (see Chapter 9). You can

also pull the plug and start over.

10 GET

11

12

13

14

JSR GETIN

BEQ GET

JSR CHROUT

CLV

BVC GET
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IV. Loop Counters

The increment and decrement instructions in Table 6-2 are easily

understood. Consider the increment instructions INX, INY, and INC. The

number in the X register, Y register, or a memory location M is incremented

by one when the corresponding instruction is executed. When the number

being incremented reaches $FF, the next increment instruction will produce

a zero result. Thus, the counting proceeds as follows:

... $FD, $FE, $FF, $00, $01, $02, ...

In the case of the decrement instructions DEX, DEY, and DEC, the number

in the X register, Y register, or a memory locationM is decremented by one when

the corresponding instruction is executed. In this case, the counting proceeds

as follows:

... $02, $01, $00, $FF, $FE, $FD, ...

The INX, INY, DEX, and DEY instructions use the implied addressing mode

because the location of the operand is implied by the instruction itself. These

are, therefore, single-byte instructions. The INC and DEC instructions, on

the other hand, modify a number in memory. The program must, therefore,

supply information about the address of the memory location where the

operand is located. These instructions use, among other addressing modes

to be described in Chapter 8, zero-page and absolute addressing.

The INC and DEC instructions do not use the immediate addressing mode

because that would imply that a number in the program is to be modified/a

practice that is strongly discouraged because programs should be capable of

being stored inROMwhere they cannot be modified. If you study the instruc

tion set summarized in Table 2-1, you will also notice that the immediate ad

dressing mode is not used by the various store (STA, STX, STY) instructions.

To illustrate the use of a loop counter, consider the program in Example

6-7 and its flowchart in Figure 6-3. The program does nothing but waste time,

which is why it is called a delay loop. Machine-language programs execute so

quickly that it is sometimes necessary to introduce delays. The program in

Example 6-7 can be modified to give various delays. Notice the use of the DEX

instruction and the BNE branch instruction.

To calculate the delay, the number of clock cycles required by each instruc

tion is found from the instruction set in Table 2-1. These are added together

to find the total delay. Calculating the delay in dock cycles is frequently tedious

and requires great care. For the program in Example 6-7 we find that the delay,

expressed in clock cycles N is given by the formula

N = 5*X+13

where X is the number placed in the X register before the loop starts. In ob

taining this formula, we have taken into account the JSR DELAY instruction

(six cycles) required to get to this subroutine and the RTS instruction (six

cycles) required to return to the calling program. With X = $CA, as shown
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in Example 6-7, we find N = 1,023 clock cycles. Since a dock cyde on the

Commodore 64 is approximately 0.977778 microseconds, the delay loop in

Example 6-7 gives a delay of approximately 1.000 millisecond. Try to verify

these calculations yourself.

Example 6-7. A Simple Delay Loop

Object: Delay approximately 1.000 millisecond.

10 DELAY

11 LOOP

12

13

LDX #$CA

DEX

BNE LOOP

RTS

;SET UP DELAY FOR 1023 CYCLES.

;DECREMENT X. X = X - 1.

;BRANCH IF X IS NOT ZERO.

C200 A2 CA

C202 CA

C203 DO FD

C205 60

LDA #$CA

Z FLAG = 0

ZFLAG = 1

Figure 6-3. Flowchart of the delay loop in Example 6-7.
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We turn next to an explanation of the test instructions, after which we will

provide programming examples that illustrate both the loop counters and the

test instructions.

V. Test Instructions

The test instructions are so named because they do not produce results in

quite the same way as previously described instructions. In fact, after a test

instruction is executed, the only code that is modified is the one in the pro

cessor status register. In other words, the test instructions are used to set flags,

and that is all.

Three of the test instructions identified in Table 6-2 are used to compare two

numbers. The numbers are comparedby subtracting one from the other. The

minuend of the subtraction operation is in A, X, or Y, depending, respectively,

on whether a CMP, CPX, or CPY instruction is used. The subtrahend of the

subtraction operation is in memory, M. In other words, a number in memory

is subtracted from a number in a 6510 register. The difference is not stored!

In contrast to the SBC instruction, where the carry flag enters into the

calculation, the carry flag is not involved in the subtraction when compare in

structions are executed. The carry flag, however, is modified by the outcome

of the subtraction.

Consider the CMP instruction as an example. Its logical description is A-M,

meaning that a number in memory is subtracted from the number in the

accumulator.

• IfA > M, then no borrow occurred so the C flag is set. Also, the answer is not

zero so the Z flag is clear.

• IfA = M, then no borrow occurred so the C flag is set. Also, the answer is zero

so the Z flag is set. • «

• IfA < M, then a borrow was generated so the C flag is clear. Also, the answer

is not zero so the Z flag is clear.

If, in the previous definition of the CMP instruction, you replace A with X

or Y, then you have a description of the CPX and CPY instructions, respec

tively. Notice once again that the logical description of the CMP instruction

(A-M) does not involve the carry flag. The carry flag is modified by the com

pare instructions, but it is not used by the compare instructions.

Although the N flag is also modifiedby the compare instructions, in almost

all programming problems it is preferable to overlook this fact. Subtracting

a smaller unsigned number from a larger unsigned number, for example, does

not always produce a positive number (bit seven and the N flag clear). For

example, $FF -$7F =$80, which has a one in bit seven, signifying a negative

result. The negative result, in turn, suggests that we subtracted a larger

number from a smaller. You can see that the results can be confusing. A good

rule of thumb is to use compare instructions and the carry flag to indicate

"greater than" or "less than" relationships between numbers.

Examples 6-8 and 6-9 illustrate typical comparison calculations.
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Example 6-8. Illustration of a CMP Calculation

If the number $BE is in the accumulator and $2D is the operand of the CMP

instruction, how will the C, Z, andN flags be modified by the CMP instruction?

Solution: Since $BE > $2D, C will be set andZ will be cleared. Also, since $BE

- $2D = $91 and $91 has a one in bit seven, the N flag will also be set by the

CMP instruction.

Example 6-9. Illustration of a CPY Calculation

Assume $7F is in the Y register and the location referenced by the CPY instruc

tion contains $F7. Describe the condition of the C, Z, and N flags after the CPY

instruction is executed.

Solution: Since $7F < $F7, C will be dear and Z will be dear. Since $7F - $F7

and $88 has a one in bit seven, N will be set.

Table 6-3 illustrates which branch instructions are required for the various

relational possibilities. The branch instruction listed will produce a branch

if the relational situation is true.

Table 6-3. Branch instructions for number relationships.

Carry Zero

Flag Flag Branch

Number Relationship (Q (Z) Instruction(s)

A=M,

A^M,

A>M,

A<M,

A=>M,

A<=M,

A-M=0

A-M#0

A-M>0

A-M<0

A-M=>0

A-M<=0

1

X

1

0

1

X

1

0

0

0

X

X

BEQ

BNE

BCS

BCC

BCS

BCC BEQ

Notes: 1. An X means the flag could be either clear or set.

2. If the number relationship is true, the branch instruction(s) will cause the branch to be taken.

The last test instruction to be described is the BIT instruction. The BIT in

struction forms the logical AND with the number in the accumulator and a

number in memory. It also transfers bit seven of the memory location it tests

to the N flag and bit six of the memory location it tests to theV flag in the pro

cessor status register. To summarize the BIT instruction:

• If A AND M = 0, then the Z flag will be set; otherwise, it will be cleared.

• M — N; that is, bit seven transfers into the N flag.

• M — V; that is, bit six transfers into the V flag.

It is often true that an LDA instruction will set the same flags as the BIT

test. Why use the BIT test? The BIT test does not modify the code in the
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accumulator, whereas an LDA instruction will modify that code. The BIT test

is used whenyou want to test specific bits without modifying the code in the

accumulator. The calculation in Example 6-10 illustrates a BIT calculation.

Example 6-10. Illustration of a Bit Calculation

If the accumulator contains $04 and the operand of the BIT instruction is $42,

how will the C, Z, N, and V flags be modified by the execution of the BIT

instruction?

Solution: The C flag is not modified by the BIT instruction. Since $04AND $42

= $00, the Z flag will be set. Since the operand ($42) of the bit instruction has

azeroinbit seven, the N flag will be cleared. Since the operand has a one in bit

six, the V flag will be set.

This completes our explanation of the test instructions. Programming ex

amples that illustrate how these instructions are used will follow.

VI. Programming Examples for Branches and Loops

The program in Example 6-11 illustrates INY and CPY instructions. The loop

starts with Y = $21 and ends with Y = $80. The Y register serves as a loop

counter and the CPY instruction is used to terminate the loop. The object of

the program is to output part of the Commodore 64 character set to the screen.

In this case, the program starts with the character code for the exclamation

point, $21, and ends with the character code $7F, one of the graphics

characters. Determining the values taken by a loop counter is sometimes dif

ficult and worth detailed attention. Try using this program to output a dif

ferent set of characters. Remember that certain codes may home the cursor

or clear the screen.

Example 6-11. A Program to Demonstrate the INY and CPY

Instructions

Object: Print a subset of the Commodore 64 character set on the screen.

10

11

12

13

14

15

16

ORG

LOOP

LDY

TYA

JSR

INY

CPY

BCC

RTS

#$21

CHROUT

#$80

LOOP

;START CHARACTER CODES AT $21.

;TRANSFER CODE TO THE ACCUMULATOR.

;OUTPUT IT WITH COMMODORE 64 ROUTINE.

;INCREMENT Y. Y = Y + 1.

;CALCULATE Y - $80 AND SET FLAGS.

;IF Y < $80 THEN GO TO LOOP.

;IF Y = > $80, THEN RETURN.

cooo

C002

C003

C006

C007

C009

C00B

A0

98

20

C8

CO

90

60

21

D2 FF

80

F7

The function of the program in the next example is identical to the program

in Example 6-3, but the program makes use of the BIT instruction to ac

complish the same task. Refer to Example 6-12 to see how the BIT instruction
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is used to wait for the alarm bit to be set on the TOD clock on the CIA. Com

pare Examples 6-3 and 6-12. Which requires less time? Notice that when the

BIT instruction is used, the mask that isolates bit two is loaded only once,

whereas in Example 6-3 the mask is loaded each time through the loop. The

reason for this is that the BIT instruction does not modify the number in the

accumulator. The loop time in Example 6-3 is nine clock cycles, and the loop

time in Example 6-12 is seven clock cycles.

Example 6-12. Demonstration of the Bit Instruction

Object: Wait in a loop until the alarm hit is set.

;EXAMPLE 6-12

IRCREG EQU $DC0D

CHECK

;

;

;

;

;

;

EQU $C000

10 CHECK

11 OFFSET

12

13

LDA #$04

BIT IRCREG

BEQ OFFSET

RTS

;MASK IS 00000100.

;IS THE ALARM BIT, IRC3, SET?

;NO, Z = 1, BRANCH BACK TO OFFSET.

;YES, Z = 0, RETURN.

DC0D

C000

C000 A9 04

C002 2C 0D DC

C005 F0 FB

C007 60

To test the programs in Examples 6-3 and 6-12, we provide the program in

Example 6-13. It sets the alarm for one minute, sets the clock to start at zero,

and starts the clock. After starting the clock, the program jumps to the

subroutine in Example 6-12 to wait for the alarmbit to be set. After the alarm

bit is set, control returns to the program in Example 6-13 and then back to

BASIC. Loadboth Examples 6-12 and 6-13 into memory, then execute Exam

ple 6-13 using a SYS 49152 command from BASIC. One minute later you

should see BASIC'S READY prompt appear. Replace Example 6-12 with Ex

ample 6-3 and repeat the experiment.

TTie only unusual feature in Example 6-13 is the use of the SEI and CLI in

structions. Please accept these as necessary to test the example programs:

these two instructions will be fully explained in Chapter 9.

Example 6-13. A Program to Set the Alarm and Start the Clock

Object: Set the

11 ORG

12

13

14

15

16

17

18

19

20

21

SEI

LDA

ORA

STA

LDA

STA

STA

STA

LDA

STA

LDA

alarm for one minute after the dock is started.

CRB

#$80

CRB

#00

HRS

SEC

THSSEC

#$01

MIN

#$7P

;STOP OPERATING SYSTEM INTERRUPTS.

;SET BIT SEVEN OF CONTROL REGISTER.

;SET ALARM.

INITIALIZE HOURS REGISTER.

;SET SECONDS.

;SET TENTHS OF SECONDS.

;SET ALARM FOR 1 MINUTE.

;NOW SET TIME.

C100

C101

C104

C106

C109

C10B

C10E

Clll

C114

C116

C119

78

AD

09

8D

A9

8D

8D

8D

A9

8D

A9

OF

80

OF

00

0B

09

08

01

0A

7F

DC

DC

DC

DC

DC

DC
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22

23

24

25

26

27

28

29

30

31

AND CRB

STA CRB

LDA #00

STA HRS

STA MIN

STA SEC

STA THSSEC

JSR CHECK

CLI

RTS

;CLEAR BIT SEVEN TO SET TIME.

;CLEAR ALL TIME REGISTERS.

;CHECK THE ALARM.

;ENABLE OPERATING SYSTEM INTERRUPTS.

CUB

CUE

C121

C123

C126

C129

C12C

C12F

C132

C133

2D

8D

A9

8D

8D

8D

8D

20

58

60

OF

OF

00

0B

0A

09

08

00

DC

DC

DC

DC

DC

DC

CO

The CMP, INC, and DEC instructions have not yet been illustrated. The
program in Example 6-14 illustrates these instructions and two branch instruc

tions in a graphics application. The program illustrates how a sprite can be

moved: in particular, sprite #0 is moved up and down on the scrfeen. It is dif

ficult to analyze a long assembly-language program, so we have divided the

program in Example 6-14 into three parts separated by spaces. The first section

of the program is identical to the initialization sequence in Example 3-6, and
it will not be discussed further.

Example 6-14. A Program to Bounce a Sprite Up and Down

Objective: Move sprite #0 up and down on the screen.

11 ORG

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 DOWN

27

28

29

30

31 UP

32

33

34

35

36

37

38

39 DELAY

40 LOOP

41

42

LDA

STA

LDA

STA

LDA

STA

LDA

STA

STA

LDX

STX

LDY

STY

INC

JSR

LDA

CMP

BCC

DEC

JSR

LDA

CMP

BCS

BCC

LDX

DEX

BNE

RTS

#$0D

$07F8

#$01

VIC15

#$07

VIC21

#$06

VIC27

VIC20

#$80

VIC00

#$80

VICOl

VICOl

DELAY

VICOl

#$E5

DOWN

VICOl

DELAY

VICOl

#$32

UP

DOWN

#00

LOOP

;SPRITE #0 MEMORY POINTER.

;TURN ON SPRITE #0 ON THE VIC.

;SELECT A YELLOW BACKGROUND.

;SELECT BLUE FOR THE SPRITE.

;SELECT A BLUE BORDER COLOR.

;$80 = 128 WILL BE THE X COORDINATE

;OF SPRITE #0.

;ALSO CHOOSE 128 FOR THE Y COORDINATE

;MOVE SPRITE DOWN.

;SLOW DOWN SPRITE MOVEMENT.

;FETCH THE Y COORDINATE.

;IS SPRITE AT BOUNDARY?

;NO. BRANCH BACKWARD TO MOVE DOWN.

;YES, START MOVING UP.

;SLOW DOWN THE SPRITE.

;FETCH THE Y COORDINATE.

;IS SPRITE AT THE TOP BOUNDARY?

;NO. BRANCH BACKWARD TO MOVE UP.

;YES. START DOWN AGAIN.

;DELAY LOOP. START X AT ZERO.

;X = X - 1.

;LOOP UNTIL X = 0 AGAIN.

cooo

C002

C005

C007

C00A

cooc

COOF

con

C014

C017

C019

C01C

C01E

C021

C024

C027

C02A

C02C

C02E

C031

C034

C037

C039

C03B

C03D

C03F

C040

C042

A9

8D

A9

8D

A9

8D

A9

8D

8D

A2

8E

A0

8C

EE

20

AD

C9

90

CE

20

AD

C9

B0

90

A2

CA

DO

60

0D

F8

01

15

07

21

06

27

20

80

00

80

01

01

3D

01

E5

F3

01

3D

01

32

F3

E4

00

FD

07

DO

DO

DO

DO

DO

DO

DO

CO

DO

DO

CO

DO

The second part of the program in Example 6-14 is where the sprite is

moved. The y-coordinate of sprite #0 is controlled by the number in register

VICOl. INCrementing this number moves the sprite down, DECrementing

this number moves the sprite up. As long as the y-coordinate remains between
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$32 and $E5, the entire sprite remains on the screen. CMP instructions are

used to keep the y-coordinate between these two values. Be sure you under
stand how the CMP instructions affect the carry flag, because it is the status

of the carry flag that is tested in the program in Example 6-14 in order to decide

whether to move the sprite up or down. Refer to the previous section and

study the program and the comments until you understandhow the program

works. Be sure to create a sprite with the program in Example 3-7 before you

try to execute the program in Example 6-14, or you will not see the sprite at all.

The last part of the program in Example 6-14 is the delay loop previously

described in Example 6-7 and Figure 6-3. Without a delay, the sprite moves

so quickly that it is very difficult to observe. It is educational to write a BASIC

program that moves the sprite up and down and compare the speed of the

BASIC sprite with our machine-language sprite.

The program in Example 6-15 illustrates at least two new concepts in addi

tion to reinforcing concepts already learned. Once again, the program has been

divided into three parts. The first part is the initialization sequence for the SID

chip, Voice #1, given in Example 3-5. It will not be discussed further. The last

part of the program is a delay loop that slows the middle part of the program.

It is the middle section of the program that interests us. This section causes

the SID chip to output its entire range of frequencies. The frequency ofVoice

#1 is controlled by the numbers in two eight-bit, write-only registers located

at $D400 and $D401. $D400 is the least-significant byte (LSB) of the frequency

and $D401 is the most-significant byte (MSB) of the frequency. A register that

cannot be read (with an LDA instruction for example) is called a write-only

register. All but four of the SID registers are write-only registers. Write-only

registers preclude the use of the INC and DEC instructions, among others,

because these instructions require that the microprocessor first read the

number stored in a register or memory location, then modify the number, and

then write the new number back into the register. The INC andDEC instruc

tions are part of a group of instructions called read-modify-write instructions,

and they cannot be used in conjunction with write-only registers. Any instruc

tion that uses a read operation will not work with a write-only register.

To increment the frequency, we choose two other read/write memory loca

tions to hold the LSB and the MSB of the frequency. These locations, $00FB

and $00FC in Example 6-15, can be incremented or decremented, and their
contents can be transferred to the corresponding frequency registers in the

SID chip with an STA instruction. That is the approach we use in Example

6-15. You now know how to deal with write-only registers.

Example 6-15. Incrementing a Two-Byte Counter

Object: Sample all the frequencies available on the SID chip by incrementing

the two-byte frequency register.

;$0F CORRESPONDS TO MAXIMUM VOLUME. CO00 A9 OP

;SET THE VOLUME ON SID. C002 8D 18 D4

;SET THE ATTACK/DECAY RATE C005 A9 00

;FOR VOICE #1 ON SID. C007 8D 05 D4

;SET THE SUSTAIN LEVEL FOR VOICE #1 C00A A9 F0

13 INITLZ

14

15

16

17

LDA #$0F

STA SID18

LDA #$00

STA SID05

LDA #$F0



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

STA

LDA

STA

LDA

STA

STA

;

LOOP' LDA
STA

LDA

STA

JSR

INC

BNE

INC

PAST BNE

RTS

;DELAY

DELAY LDX

LOAF DEX

BNE

RTS

VI. r

SID06

#$21

SID04

#00

+LOFREQ

+HIFREQ

+T.OFREQ

SID00

+HIFREQ

SID01

DELAY

+LOFREC

PAST

+HIFREQ

LOOP

SUBROUTINE

#$FF

LOAF

rogrammmg examples tot orancnes ana uoo

;ON SID.

;SELECT A RAMP WAVEFORM FOR VOICE #1

;AND START THE SOUND.

;START FREQUENCY AT ZERO.

•BYTE TO HOLD LOW FREQUENCY.

;BYTE TO HOLD HIGH FREQUENCY.

;GET LOW FREQUENCY BYTE.

;STORE IN LOW FREQUENCY REGISTER.

;GET HIGH FREQUENCY BYTE.

;STORE IN HIGH FREUENCY REGISTER.

;DELAY LONG ENOUGH TO HEAR TONE.

;INCREMENT TWO-BYTE COUNTER.

;BRANCH PAST UNLESS LOFREQ =0.

•IF LOFREQ = 0, THEN INC HIFREQ.

;STAY IN LOOP UNTIL ALL POSSIBLE

;FREQUENCIES HAVE BEEN GENERATED.

;MAKE A DELAY LOOP.

;X = X - 1.

?LOOP UNTIL X = 0.

cooc

C00F

con

C014

C016

C018

C01A

C01C

COIF

C021

C024

C027

C029

C02B

C02D

C02F

C030

C032

C033

C035

8D

A9

8D

A9

85

85

A5

8D

A5

8D

20

E6

DO

E6

DO

60

A2

CA

DO

60

ft//

06

21

04

00

FB

FC

FB

00

FC

01

30

FB

02

FC

EB

FF

FD

D4

D4

D4

D4

CO

The second new concept illustrated by Example 6-15 is how to increment

a two-byte counter. The locations LOFREQ at $00FB and HIFREQ at $00FC

are employed to store a single 16-bit number, namely, the frequency of the

SID chip. Program lines 31 through 34 increment this 16-bit number. Notice

that the MSB is incremented only when the LSB passes through zero. That

is because counting proceeds in this manner:

1, ..., $FE, $FF, $100, $101, ..., $1FF, $200, $201, ..., $FFFF

Notice that the only time the MSB is incremented is whenthe LSB is $00. After

the two-byte number in LOFREQ and HIFREQ is incremented, it is stored

in the SID registers by the instructions on lines 26 through 29.

Be sure to clear all of the SID registers (see Example 3-5) before executing

the program in Example 6-15. Experiment with different values for the delay

loop constant $FF on line 39 in Example 6-15.

The next programming example shows how a loop structure can be used

to measure time intervals, in this case the time between a visual stimulus and

your response to this stimulus. The programs in Examples 6-16 and 6-17 also

illustrate how machine-language and BASIC programs can be used to com

plement each other. Again, the assembly-language program in Example 6-17

has been divided into three parts, an initialization sequence, a timing loop,

and a sequence of instructions that concludes the program and puts the

Commodore 64 operating system in operation once again. We are principal

ly interested in the timing sequence in the middle of the program in Example

6-16, and a flowchart for this part of the program is shown in Figure 6-4. Refer

to Examples 6-16 and 6-17. The machine-language program is called from the

BASIC program by the SYS 49152 instruction on line 25 of the BASIC pro

gram. Here is what happens. The machine-language program blanks the

screen by clearing bit four in the VIC control register at $D011. As soon as the

screen is blanked, the timing loop starts. The timing loop is terminated when
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you press the button on paddle Y of your game paddle. The loop counters

are stored and, after putting the operating system back together, program con

trol returns to the BASIC program where the loop counters are used to

calculate the time it took you to respond to the screen going blank. In other

words, these two programs allow you to measure your reaction time to a visual

stimulus.

The BASIC program provides written instructions to the user, and it and

calculates the time. It also waits a random length of time before calling

the machine-language subroutine. Refer to lines 5 through 20 in Exam

ple 6-17. The time is calculated and printed with lines 30 to 50 in the BASIC

program. Line 30 calculates the number of clock cycles that elapsed be

tween the screen going blank and the paddle button being pressed. Line

40 converts this number to seconds by dividing by the clock frequency,

1,022,727 Hz. If you wait longer than about 0.7 seconds, the loop counter

overflows and returns to zero. This contingency is handled by lines 35

and 70 in the BASIC program.

Example 6-16. A Program to Measure a Time Interval

Object: Measure the time interval between the events "screen is blanked"

and "paddle fire button is pressed/' Use Control Port 2.

10 ORG

11

12

13

14

15

16

17

18

19

20

21 ;

22

23 LOOP

24

25

26

27

28

29 OUT

30

31

32

33

34

35

36

37

38

39

SEI

LDA DDRA

STA +$02

LDA #$00

STA DDRA

LDX #00

LDY #00

LDA #$EF

AND VICTRL

STA VICTRL

LDA #$08

BIT PAD

BEQ OUT

INX

BNE LOOP

INY

BNE LOOP

STX +$FB

STY + $FC

LDA #$10

ORA VICTRL

STA VICTRL

LDA +$02

STA DDRA

CLI

RTS

;DISABLE OPERATING SYSTEM INTERRUPTS.

;SAVE CONTENTS OF DDRA TO RETURN

tOPERATING SYSTEM TO NORMAL.

;MAKE PORT A, PAD, AN INPUT PORT BY

;CLEARING DDR FOR PORT A.

;INITIALIZE LOOP COUNTERS.

;MASK BIT 4.

;CLEAR BIT 4 TO BLANK SCREEN

;TO SIGNAL START OF TIMING.

/•ISOLATE PADDLE Y BUTTON.

;IS BUTTON PRESSED? BIT 3=0?

;IF SO, BRANCH OUT OF LOOP.

;IF NOT, GO THROUGH THE TIMING LOOP.

;RETURN TO CHECK BUTTON.

;THEN GO THROUGH THE Y LOOP.

;RETURN TO CHECK BUTTON.

;STORE THE X COUNTER.

;STORE THE Y COUNTER

C000 78

C001 AD 02 DC

C004 85 02

C006 A9 00

C008 8D 02 DC

C00B A2

C00D A0

00

00

C00F A9 EF

C011 2D 11 DO

C014 8D 11 DO

C017 A9 08

C019 2C 00 DC

C01C F0 06

C01E E8

C01F DO F8

C021 C8

C022 DO F5

C024 86 FB

C026 84 FC

;TURN ON THE SCREEN AGAIN. C028 A9 10

C02A 0D 11 DO

C02D 8D 11 DO

;GET DDRA CONTENTS BACK. CO30 A5 02

;PUT OPERATING SYSTEM BACK TO NORMAL. C032 8D 02 DC

;ENABLE INTERRUPTS AGAIN. CO35 58

;RETURN TO BASIC TO CALCULATE TIME. C036 60
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$08—*-A

A AND PAD

Figure 6-4. Flowchart of the timing loop in Example 6-16.
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Example 6-17. A BASIC Program to Call the Machine-Language

Program in Example 6-16

READY.

4 REM EXAMPLE 6-17

5 PRINT n<CLR>"

10 PRINTMPRESS THE PADDLE BUTTON WHEN"

11 PRINT"THE SCREEN GOES BLANK."

15 Y=1000+6000*RND(0)

20 FOR 1=0 TO Y:NEXT

25 SYS 49152

30 T=ll*PEEK(251)+2820*PEEK(252)

35 IF T = 0 THEN 70
40 T=T/1022727:T=INT(T*1000+.5)/1000

45 PRINT"<HOM><DWNXDWN><DWN><DWN><RHT><RHT><RHTXRHT>" ;

50 PRINT"REACTION TIME = ";T; "SECONDS.

60 GO TO 15

70 PRINT "YOU'RE TOO SLOW, TRY AGAIN."

80 GO TO 10

READY.

READY.

How does the machine-language loop measure time? Refer to the flowchart

in Figure 6-4. The LDA #$08 and BIT PAD instructions on lines 22 and 23 of

the program in Example 6-16 isolate bit three of CIA input port A. The bit value

of bit three is zero if the paddle button is pressed; otherwise, it is one. As soon

as the button is pressed, therefore, the program will branch out of the tim

ing loop that follows the BEQ OUT instruction. The timing loop increments

both the X and Y registers. The X register is incremented in the inside loop

while the Y register is incremented in the outside loop. Each inside loop re

quires 11 clock cycles. This includes the BIT PAD, BEQ OUT, INX, and BNE

LOOP instructions. Each outside loop means the inside loop has executed

256 times. Thus, each outside loop amounts to 256*11 cycles, plus four more

cycles required by the INY and the second BNE LOOP instructions. The total

number T of dock cycles is, therefore,

T = 11*X + 2820*Y

This result explains the constants on line 30 of the BASIC program.

Load both programs into memory and RUN the BASIC program. Con

nect your game paddles to Control Port 2. Only one of the two paddle fire

buttons will function, and you can determine which it is by trial and error.

Now you are ready to measure your reaction time. Try it, then study the

assembly-language program to understand as much of it as possible. The

ability to make timing measurements is a powerful tool, and we shall

return to this topic again in Chapter 12.
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We conclude our sample programs with the two short but valuable routines

given in Examples 6-18 and 6-19. The flowcharts for these programs are shown

in Figures 6-5 and 6-6, respectively. To output information to an output device,

for example, the screen of the video monitor, disk drive, or modem, the in

formation is usually coded in a particular way. The code most frequently used

to represent numbers, letters, and punctuation marks is the American Stan

dard Codefor Information Interchange, identified by its acronym, ASCII. These

codes are identified in your Commodore 64 User's Guide, page 135. In this discus

sion we are concerned only with the codes for the hexadecimal digits

012 9AR FF

These are summarized in Table 6-4.

Table 6-4. ASCII codes for the hexadecimal digits.

Hexadecimal Number

$0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

CvamnU C HO U/v» *_. AO/*II f*

ASCII Representation

$30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

Object: Convert a one-digit hexadecimal number in the accumulator to its

ASCII representation.

10

11

12

13

14

HEXCII

AROUND

CMP

BCC

ADC

ADC

RTS

#$0A

AROUND

#$06

#$30

;IS THE HEX DIGIT =>

;NO.

;YES. ADD $07 (CARRY

;ADD $30 TO CONVERT

9?

+ $06).

TO ASCII.

C800

C802

C804

C806

C808

C9

90

69

69

60

0A

02

06

30

Example 6-18 converts a one-digit hexadecimal number in the accumulator

to its ASCII representation and returns with the ASCII code in the ac

cumulator. When studing Table 6-4 you will see that a number from $0 to $9

can be converted to its ASCII code by adding $30. However, a number from
$A to $F is converted to ASCII by adding $37. Thus, a routine to convert a
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one-digit hexadecimal number to ASCII must first distinguish between the

numbers representedby ordinary numerals and the numbers representedby

letter numerals A to F. This is the function of the CMP #$0A instruction on

A — $0A

(SET OR

CLEAR C)

A<$A

YES / IS
C CLEAR?

NO

A>$A

A + C + 6

—►A

Figure 6-5. Flowchart of the hexadecimal-to-ASCII conversion routine.
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line 10 of Example 6-18. If the number is less than ten ($0A), $30 is added.

If the number is between 10 and 15, $37 is added. Observe how $37 is added.

The $30 must be added in either case, so this instruction is put last. If the

A - $40

(SET OR

CLEAR C)

YES

A<$40

NO

A>$40

Figure 6-6. Flowchart of the ASCII-to-hexadecimal conversion routine.
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number to be converted is greater than nine, then the BCCAROUNDbranch

will notbe taken. To add seven, we add $06 plus the carry flag, set by the CMP

#$0A instruction.

Example 6-19 converts an ASCII code for a hexadecimal digit into the digit

itself, and then returns with the single-digit number in the accumulator. In

studying Table 6-4 you will see that this process can be accomplished for the

numbers $0 to $9 by subtracting $30 from the ASCII representation. You will

also observe that the numbers $A to $F can be derived from their ASCII

representations by subtracting $37. Can you understand how the program

in Example 6-19 does this? The CMP instruction is used to set or clear the carry

flag, depending on whether the ASCII code is greater than or equal to $39,

or less than $39. Also notice the use of the branch instruction to bypass the

SBC #$07 instruction. Study the flowchart in Figure 6-6 for additional details.

Example 6-19. ASCII-to-Hex Conversion Routine

Object: Convert the ASCII representation of a hexadecimal digit to the correspon

ding number, and place it in the accumulator.

10 ASCHEX CMP #$40 ;IS THE CODE < $40? C809 C9 40

11 BCC SKIP ;YES. C80B 90 02

12 SBC #$07 ;NO, SUBTRACT $07 AND THEN C80D E9 07

13 SKIP SEC ;SUBTRACT $30 TO CONVERT TO A C80F 38

14 SBC #$30 ;HEXADECIMAL DIGIT FROM $0 - $F. C810 E9 30

15 RTS C812 60

VII. Summary

Abranch instruction tests the value of a specific flag in the processor status

register. If the flag has the value for which it was tested, then the branch

instruction adds a signed number to the program counter to produce either

a forward or backward branch. If the flag does not have the value for which

it was tested, then execution continues with the instruction following the

branch instruction. The N, V, Z, and C flags can be tested by branch in

structions for values of either zero or one, requiring a total of eight branch

instructions. A branch instruction is always represented in a flowchart by a

diamond-shaped decision box.

Branch instructions are frequently used with increment or decrement in

structions to implement loops/a program structure that allows repetitive ex

ecution of a task. Loops are also used to cause a delay, or to make timing

measurements. The increment or decrement instructions serve as loop

counters.

Test instructions are used to modify flags in the processor status register.

The compare instructions set flags with a subtraction operation, and are used

to indicate "greater than/7 "equal to," or "less than" conditions. The BIT

instruction is used to test the value of a specific bit in a memory location. When

followed by a branch instruction, the BIT instruction is used to determine
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whether or not to take a particular course of action, depending on whether

a specific bit is set or clear. None of the test instructions modify either the

number in the accumulator or numbers in memory. The test instructions are

used in conjunction with branch instructions to make decisions that affect the

flow of the program.

VIII. Exercises

1. A BPL $FB instruction is located at $102D. At what address will the processor

obtain the next byte of the program if the N flag is clear? If the N flag is set?

2. What will be the status of the Z flag, the N flag, and the C flag after executing

a CMP #$6F instruction if the number $FF is in the accumulator?

3. What should the branch offset be if a program is to branch to location $AF5B,

when the branch instruction is located at addresses $AF25 and $AF26?

4. Write a program segment that waits in a loop until a sprite-data collision in

volving sprite #0 occurs. If such a collision occurs, bit zero in VIC register $1F

is set?

5. Modify the program in Example 6-16 to use the button on paddle X rather than

paddle Y. Paddle X uses bit two rather than bit three.

6. Modify the program in Example 6-14 to move the sprite horizontally between

x-coordinates $18 and $FF. then modify the program so the sprite moves in
both the x- and y-coordinates at once.

7. Modify the program in Example 6-16 to use a joystick button rather than a

paddle button.

8. Make a flowchart for lines 26 to 35 in Example 6-15.

9. Modify the delay loop in Example 6-7 to use an INX instruction instead of a

DEX instruction; then find an expression for the number of clock cycles re

quired to execute the loop.

10. Rewrite the program in Example 6-15 so that the SID outputs a tone whose

frequency decreases rather than increases.





Shift and Rotate Routines

I. Introduction

There are two shift instructions, ASL and LSR, and two rotate instructions,

ROL and ROR. The uses of these instructions are not immediately obvious,

but they turn up in a suprisingly large number of routines. The instructions

are easy to understand, but the routines in which they are found are generally

complex, and in this chapter you will find that the complexity of the programs

increases as we proceed.

The op codes of these instructions for the addressing modes that we will

use in this chapter are given in Table 7-1. The shift instructions are dia

grammed in Figure 7-1 and the rotate instructions are diagrammed in

Figure 7-2.

Table 7-1. Op codes

Mnemonic

ASL

ROL

LSR

ROR

for the instructions in Chapter 7.

Op Codes for Each Addressing Mode

Absolute Zero Page Accumulator

$0E

2E

4E

6E

$06

26

46

66

$0A

2A

4A

6A

II. Definitions of the Shift and Rotate Instructions

We begin our study of the shift and rotate instructions with their definitions:

• ASL—Arithmetic Shift Left: Each bit in the operand is moved one bit position

to the left. Zero is shifted into bit zero, and bit seven is shifted into the carry

flag. Refer to Figure 7-1.

• LSR—Logical Shift Right: Each bit in the operand is moved one bit position to

the right. Zero is shifted into bit seven, and bit zero is shifted into the carry flag.

Refer to Figure 7-1.

117
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• ROL—Rotate One Bit Left: This instruction is identical to the ASL instruction, ex

cept that the carry flag, rather than zero, is shifted into bit zero. Refer to Figure 7-2.

• ROR—Rotate One Bit Right: This instruction is identical to the LSR instruction,

except that the carry flag, rather than zero, is shifted into bit seven. Refer to

Figure 7-2.

It is obvious that these instructions modify the carry flag because a bit from

the operand is always shifted or rotated into the carry flag. These instructions

also affect the N and Z flags. If a one is shifted into bit seven, the N flag is set;

otherwise, it is cleared. If, as a result of a shift or rotate instruction, the operand

becomes zero, then the Z flag will be set; otherwise, it will be cleared. The ex

ercises at the end of the chapter will provide you with a program to demonstrate

each of these instructions so that you can see whathappens to both the operand

and the flags when the shift and rotate instructions are executed.

Refer again to Table 7-1 and you will see that these instructions have a

unique addressing mode available to them. This is the accumulator addressing

mode. In this mode, a code in the accumulator can be shifted or rotated. The

notation used to indicate the accumulator addressing mode when writing

assembly-language programs is

ASL A -

c

\ f

. i

ASL

i

\

i i i

LSR

\

i

\

i

\

i

\

i c

Figure 7-1. Diagram of the ASL and LSR instructions.
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where we have used the ASL instructions as an example. Of course, these

instructions also work when the operand is in memory, which is to say that

they also have absolute and zero-page addressing modes.

It is interesting to study the similarities and differences in the op codes in

Table 7-1. For example, it should be dear that the 6510 microprocessor can

identify the addressing mode of these instructions by the least-significant

nibble of the instruction, while the most-significant nibble is 0, 2, 4, or 6 for

the ASL, ROL, LSR, and ROR instructions, respectively.

III. Programs That Use the Shift and Rotate Instructions

With the exception of the exercises, the remainder of this chapter will be

devoted to illustrating the use of the shift and rotate instructions in assembly-

language programs.

A. Code shift

The program in Example 7-1 shifts a code from one memory location to

another using shift and rotate instructions. Although this is an unusualway

ROL

I

I

ROR

f

t
c

Figure 7-2. Diagram of the ROL and ROR instructions.



10

11

12

13

14

15

START

LOOP

LDX

ASL

ROL

DEX

BNE

RTS

#08

+NUM1

NUM2

LOOP
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to move a code from one location to another if your objective is to move codes,

the technique is used within more complex routines, and you will see it again

in our multiplication program in Example 7-9.

Example 7-1. Using the ASL and ROL Instructions

Object: Shift the code in location $00FB one hit at a time into location $C000.

;X CONTAINS LOOP COUNTER. CO01 A2 08

;SHIFT CODE ONE BIT LEFT. C003 06 FB

;ROTATE LEFT INTO NUM2 LOCATION. CO05 2E 00 CO

;REPEAT EIGHT TIMES. C008 CA

C009 DO F8

C00B 60

It is important to understand exactly how this program works. On line 10,

a counter to keep track of the number of shifts is initialized to count eight shifts.

The ASL +NUM1 instruction on line 11 shifts bit seven of the code in loca

tion NUM1 into the carry flag. A zero is shifted into bit zero of NUM1, but

this is not important for our purposes. Next, the ROL NUM2 instruction

rotates the carry flag into the least-significant bit, bit zero, of location NUM2.

Thus, the ASL +NUM1 instruction places one bit of NUM1 in the carry flag.

The ROL NUM2 instruction moves the one-bit carry flag into NUM2. After

looping through these instructions eight times, the code that was in NUM1

will now be in NUM2, and the routine is finished.

Place a number in NUM1 with a POKE 251 instruction, then use the SYS

49153 command to execute the program in Example 7-1. Now use a PEEK

49152 instruction to see if the code was moved from location 251 ($00FB) to

location 49152 ($C000). What do you expect to find in location $00FB after the

program has executed? Why? PEEK in this location to see if your hypothesis

is correct. Would the program work ifyou replaced the ASL and ROL instruc

tions with LSR and ROR instructions, respectively?

B. Displaying the code in a memory location

The program in Example 7-2 displays, in binary, the code found in memory

location $0002 by printing on the screen the bit value of each bit, starting with

the most-significant bit on the left and ending with the least-significant bit

on the right. Recall from Chapter 6 that numbers are printed on the screen

by sending the ASCII code for the number to subroutine CHROUT, an

operating system subroutine. The ASCII code must be in the accumulator

when the JSR CHROUT instruction is executed. Since, in the present case,

we are going to display eight bits of a binary number, we are only interested

in the ASCII codes for zero and one, $30 and $31, respectively. If a bit in the

memory location is one, then we must send the $31 code to subroutine

CHROUT. If a bit in the memory location is zero, then we must send the $30

code to subroutine CHROUT. A code must be output for each of the eight

bits in the memory location, starting with the most-significant bit.
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Example 7-2. Displaying the Code in a Memory Location in

Binary

Object: Display the number in location $0002 in binary.

10 DISPLA

11 LOOP

12

13

14

15

16

17

LDX #08

ROL +NUMBER

LDA #00

ADC #$30

JSR CHROUT

DEX

BNE LOOP

RTS

;COUNT EIGHT BITS.

;ROTATE NUMBER INTO CARRY.

;CLEAR ACCUMULATOR.

;CONVERT TO ASCII.

;OUTPUT THE CODE FOR 1 OR 0.

;LOOP TO GET ALL 8 BITS.

C000 A2

C002 26

C004 A9

C006 69

C008 20

C00B CA

C00C DO

C00E 60

08

02

00

30

D2 FF

F4

Notice how the program in Example 7-2 accomplishes the objective. The most-

significant bit in NUMBER is shifted into the carry flag and then added to $30.

If a one was shifted into the carry flag, then after addition the ASCII code for

one, $31, is in the accumulator. If a zero was shifted into the carry flag, then

after addition the ASCII code for zero, $30, is in the accumulator. Subroutine

CHROUT changes the ASCII code to a character on the screen. The program

then loops to get the remaining bits in location $0002 and display their values.

C. Printing a byte on the screen

To test and debug programs it is useful to have a routine that will print the

number in the accumulator. What must be accomplished? An eight-bit

number consists of two four-bit nibbles. The least-significant nibble occupies

bits zero through three, while the most-significant nibble occupies bits four

through seven. Each nibble is represented by one hexadecimal digit. We

would like to output the most-significant hexadecimal digit followed by the

least-significant hexadecimal digit. For example, suppose the number $F3 is

in the accumulator. There will be a $3 (0011) in the least-significant nibble,

and there will be a $F (1111) in the most-significant nibble. We would like our

routine to print an "F" followed by a "3."

If necessary, refer to the previous chapter or recall that in Example 6-18 we

have a routine to convert a hexadecimal digit to its ASCII representation. To

output "F3" we must first shift $F in the most-significant nibble to the least-

significant nibble. Then this number must be converted to its ASCII represen

tation by calling the subroutine in Example 6-18, called HEXCII. After

converting the nibble to ASCII, we can output it with subroutine CHROUT.

Next we must get the $3, convert it to ASCII, and send it to subroutine

CHROUT. Example 7-3 accomplishes this objective.

Notice that the program in Example 7-3 has been divided into three parts.

The first part of the program stores the number in the accumulator, shifts the

most-significant nibble to the least-significant nibble with four LSR instruc

tions, uses subroutine HEXCII in Example 6-18 to convert this number to

ASCII, and then uses subroutine CHROUT to print the digit on the screen.

Notice that the LSR instruction is used in its accumulator addressing mode.
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Example 7-3. Print the Byte in the Accumulator

Object: Convert the number in the accumulator to two hexadecimal digits and out

put these digits to the screen.

10 PRBYTE

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

STA +TEMP

LSR A

LSR A

LSR A

LSR A

JSR HEXCII

JSR CHROUT

LDA +TEMP

AND #$0F

JSR HEXCII

JSR CHROUT

LDA #$20

JSR CHROUT

LDA +TEMP

RTS

;TEMPORARILY STORE NUMBER.

;SHIFT THE NUMBER IN THE

;ACCUMULATOR FOUR BITS TO THE RIGHT.

;MOST SIGNIFICANT NIBBLE IS ZERO.

;NUMBER IS NOW IN LOW NIBBLE.

;CONVERT NUMBER TO ASCII.

;OUTPUT ITS CODE TO THE SCREEN.

;GET ORIGINAL NUMBER BACK IN A.

;MASK MOST SIGNIFICANT NIBBLE.

;CONVERT SECOND DIGIT TO ASCII.

;OUTPUT ITS CODE.

;OUTPUT ASCII SPACE BY SENDING

;SPACE CODE TO OUTPUT ROUTINE.

;RESTORE THE ACCUMULATOR.

C813 85 02

C815 4A

C816 4A

C817 4A

C818 4A

C819 20 00 C8

C81C 20 D2 FF

C81F A5 02

C821 29 OF

C823 20 00 C8

C826 20 D2 FF

C829 A/9 20

C82B 20 D2 FF

C82E A5 02

C830 60

The second part of the program retrieves the number in the accumulator,

masks the most-significant nibble, converts the number in the least-significant

nibble to ASCII using subroutine HEXCII, and then uses CHROUT to output

the code to the screen. The last part of the program sends a space to CHROUT

to provide a space on the screen between successive numbers, the original

number in the accumulator is recovered, and control returns to the calling

program.

Thus, if the number $F3 were in the accumulator, lines 10 through 16 of the

program in Example 7-3 would output the "F." Lines 19 through 22 would

output the "3." Lines 25 and 26 output a space, and lines 27 and 28 restore

the accumulator and return to the calling program.

Because the programs in Examples 6-18,6-19,7-3, and 7-4 are so useful, we

have written them so they all can be stored in page $C8 of memory. Then they

are out of the way of other programs, and they can easily be stored on disk

and recalled. We suggest that you do tile same thing. In subsequent examples

we will call these routines. These examples will also serve to test the HEXCII,

ASCHEX, PRBYTE, and GETBYT routines. We turn next to a description of

the GETBYT routine.

D. Getting a byte from the keyboard

We will now describe a subroutine called GETBYT, which is listed in

Example 7-4. This subroutine is used to input one byte of information from

the keyboard and return with this byte in the accumulator. The byte of in

formation is typed on the keyboard as two hexadecimal digits. Subroutine

GETBYT calls subroutine ASCHEX in Example 6-19 to convert the ASCII

representation of a hexadecimal digit into a hexadecimal number.
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We have divided the program in Example 7-4 into four parts. The first part,

consisting of lines 10 through 14, fetches a character from the keyboard and

prints the character on the screen. This part uses the operating system

subroutine GETIN to read the keyboard and the operating system subroutine

CHROUT to echo the keyboard character on the screen. When a key is

pressed, subroutine GETIN returns with the ASCII code for the character on

the key. In this case, we are assuming that a key representing a hexadecimal

digit from 0 to F was pressed. At the end of the first part of the program, this

code is in the accumulator.

The second part of the program calls subroutine ASCHEX in Example 6-19

to convert the ASCII code to a hexadecimal number. The most-significant digit

is normally entered first, so this is the most-significant digit of the two-digit

number. However, ASCHEX returns with this number in the least-significant

nibble, so four ASL instructions are used to shift this number to the most-

significant nibble. This result is temporarily stored in location TEMP, com

pleting the second part of the program in Example 7-4.

Example 7-4. A Program to Get a Byte of Data from the

Keyboard

Object: Fetch two hexadecimal digits from the keyboard and return with

the number in the accumulator.

10 GETBYT

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 LOAF

26

27

28

29

30

31

32

33

34

JSR

BEQ

TAX

JSR

TXA

JSR

ASL

ASL

ASL

ASL

STA

JSR

BEQ

TAX

JSR

TXA

JSR

ORA

RTS

GETIN

GETBYT

CHROUT

ASCHEX

A

A

A

A

+TEMP

GETIN

LOAF

CHROUT

ASCHEX

+TEMP

;READ THE KEYBOARD.

;WAIT FOR A NON-ZERO RESULT.

;SAVE CHARACTER IN X FOR A MOMENT.

;OUTPUT THE KEYBOARD CHARACTR.

;GET THE CHARACTER BACK FROM X.

;CONVERT ASCII TO HEXADECIMAL.

;SHIFT DIGIT TO THE MOST

;SIGNIFICANT NIBBLE USING FOUR

;SHIFTS LEFT IN THE

;ACCUMULATOR ADDRESSING MODE.

;TEMPORARILY STORE THIS RESULT.

;GET ANOTHER CHARACTER CODE.

;SAVE IT IN X FOR A MOMENT.

;OUTPUT IT TO SEE IT.

;PUT CODE BACK IN ACCUMULATOR.

;CONVERT IT TO HEXADECIMAL.

;COMBINE IT WITH THE FIRST DIGIT.

C831

C834

C836

C837

C83A

C83B

C83E

C83F

C840
C841

C842

C844

C847

C849

C84A

C84D

C84E

C851

C853

20

F0

AA

20

8A

20

0A

0A

0A

0A

85

20

F0

AA

20

8A

20

05

60

E4

FB

D2

09

02

E4

FB

D2

09

02

FF

FF

C8

FF

FF

C8

The third part of the program in Example 7-4 is exactly like the first part.

Its function is to obtain the second character code from the keyboard and print

the character on the screen. The character code is in the accumulator when

the program moves to its final part.

The last part of the program, lines 32 through 34, converts the last

character entered into a hexadecimal number. This number will occupy
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the least-significant nibble. This nibble is ORAed with the first nibble to give

the final result. The binary equivalent of the two hexadecimal digits entered

on the keyboard is now in the accumulator, completing the program.

A program that tests the subroutines in Examples 6-18, 6-19, 7-3, and 7-4

is given in Example 7-5. This program calls GETBYT to get a byte of data from

the keyboard and calls PRBYTE to print the byte on the screen. A space is also

printed to separate the characters printed on the screen by GETBYTfrom those

printed on the screen by PRBYTE. Load all of the routines just mentioned into

the locations from $C800 to $C853. Then load the program in Example 7-5 into

memory and execute it with a SYS 49152 command. If all of your subroutines

have been assembled and loaded correctly, you should be able to type a two-

digit (hexadecimal) number on the keyboard and see it displayed on the

screen. Do not wait for a flashing cursor because there will be none. Directly

after the SYS 49152 command, type a two-digit number on the keyboard. You

now have some valuable routines that provide keyboard input and screen out

put for your machine-language programs. Store them on tape or disk.

Example 7-5. A Program to Test Examples 7-3 and 7-4

Object: Input a byte with subroutine GETBYT and output the same byte with

subroutine PRBYTE.

10 TEST

11

12

13

14

15

16

17

JSR

STA

LDA

JSR

LDA

JSR

CLV

BVC

GETBYT

+TEMP

#$20

$FFD2

+TEMP

PRBYTE

TEST

;GET A NUMBER TO PUT IN A.

;SAVE IT HERE.

;OUTPUT A SPACE.

;GET THE NUMBER.

;OUTPUT IT AS TWO HEX DIGITS.

;FORGE A BRANCH.

;STAY IN THIS LOOP FOREVER.

COOO

C003

C005

C007

C00A

COOC

C00F

C010

2a

85

A9

20

A5

20

B8

50

31

02

20

D2

02

13

EE

C8

FF

C8

E. Simple arithmetic with shifts

It is possible to do some relatively simple multiplications and divisions with

the shift instructions. To illustrate, suppose we have the number $84 =

10000100 in the accumulator. After one shift right (LSR), the binary number

is clearly 01000010, or $42. After another shift right, the binary number is

00100001, or $21. You can see that one shift right is equivalent to division by

two, two shifts right is equivalent to division by four, and so on. Of course,

if we had started with an odd number, then the first shift right would have

moved a bit into the carry, where it is lost. In other words, you can divide

by 2,4,8,16,..., but the remainders are lost as they disappear into the carry

flag or disappear altogether in that great bit bucket in the sky.

Suppose we start with the number $5 (00000101) in the accumulator and

try some left shifts. The first shift left gives 00001010 = $0A, or 10. The second

shift left gives 00010100 = $14, or 20. The third shift left gives 00101000 = $28,



III. Programs That Use the Shift and Rotate Instructions 125

or 40. In other words, successive shifts left multiply the number in the

accumulator by two, provided no sigificant bits shift out of the accumulator

into the carry flag or beyond.

To summarize:

• Multiplication by 2, 4, 8,16, ... can be accomplished with successive ASL in

structions, provided no significant bits are shifted into oblivion.

• Division by 2,4,8,16,... can be accomplished with successive LSR instructions,

with the realization that any remainder is lost.

• To avoid losing significant bits or remainders, ROL orROR instructions can be

used to move the bits lost by the ASL or LSR instructions into new locations.

It is also possible to perform certain other multiplications with the ASL in

struction. For example, since 10 = 2 + 8, you can multiply by 10 by first

multiplying by 2, then by 8, and then add these two results. How would you

multiply by five? By 40?

The program in Example 7-6 demonstrates these ideas. It uses subroutine

GETBYT in Example 7-4 to get an eight-bit number in the accumulator. It prints

this result, then it goes through a succession of eight shifts, printing the

number each time. Obviously, after eight shifts the number in the acaimulator

will be zero. Load GETBYT and the program in Example 7-4. Execute them

with a SYS 49152 command. Enter a number like $84 from the keyboard and

observe the results. Try an odd number such as $7F. What happens to it during

successive divisions by two? In Example 7-6 replace the LSR op code with an

ASL op code using the accumulator addressing mode. Run the program again

and enter a number such as $41. What do you observe? Finally, experiment

with ROL and ROR instructions in place of the LSR instruction in Example

7-6. Can you understand and explain your results?

Example 7-6. A Program to Illustrate Successive Divisions by 2

Object: Demonstrate the effect of successive LSR instructions on a number.

10 START JSR GETBYT ;GET A NUMBER IN A. C000 20 31 C8

11 LOOP JSR PRBYTE ;PRINT IT. C003 20 13 C8

12 LSR A ;SHIFT IT RIGHT. C006 4A

13 BNE LOOP ;CONTINUE TO OUTPUT IT UNTIL . C007 DO FA

14 RTS ;IT IS ZERO. C009 60

F. Watching the clock

The next program illustrates an application for the PRBYTE subroutine. The

program in Example 7-7 illustrates how the time-of-day clock on the CIA can

be read using the PRBYTE subroutine in Example 7-3. The dock is started with

the STA TENTHS instruction on line 10. After that the program simply reads

and prints the hours, minutes, seconds, and tenths of seconds, usingPRBYTE

to display the information. Since the TOD registers keep time in BCD, the

numbers displayed are decimal numbers. Finally, on lines 20 through 24 the
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cursor is backspaced 12 spaces so that the new times are written directly over

the old times. The instruction on line 25 keeps the program in an infinite loop.

Be sure subroutine PRBYTE is in memory before trying to execute the pro

gram in Example 7-7.

Example 7-7. A Program to Read the TOD Clock

Object: Read and output each register of the TOD clock on

10 TOD

11 MORE

12

13

14

15

16

17

18

19

20

21 LOOP

22

23

24

25

STA

LDA

AND

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDY

LDA

JSR

DEY

BNE

BEQ

TENTHS

HOURS

#$1F

PRBYTE

MINUTS

PRBYTE

SECNDS

PRBYTE

TENTHS

PRBYTE

#$0C

#$9D

$FFD2

LOOP

MORE

;START THE TOD CLOCK.

;READ THE HOURS.

;MASK SOME HIGH BITS.

;OUTPUT THE HOURS.

;FETCH MINUTES REGISTER CONTENTS.

;OUTPUT TO THE SCREEN.

;FETCH THE SECONDS.

;OUTPUT TO THE SCREEN.

;GET TENTHS OF SECONDS.

;MOVE CURSOR BACK 12 SPACES.

;$9D IS CODE FOR CURSOR LEFT.

;LOOP FOREVER.

the CIA.

cooo

C003

C006

C008

. C00B

C00E

con

C014

C017

C01A

C01D

COIF

C021

C024

C025

C027

8D

AD

29

20

AD

20

AD

20

AD

20

A0

A9

20

88

DO

F0

08

0B

IF

13

0A

13

09

13

08

13

OC

9D

D2

F8

DA

DC

DC

C8

DC

C8

DC

C8

DC

C8

FF

IV. More Advanced Arithmetic Operations*

The 6510 microprocessor cannot multiply or divide, so it is up to the pro

grammer to write routines to accomplish these operations. When writing a

program to perform a task as complex as multiplication or division, it is fre

quently useful to perform the task with pencil and paper and then try to write,

in English, an algorithm that will accomplish the task. The more closely you

think like a microprocessor, the more easily your algorithm will translate into

assembly-language code.

Consider multiplication, for example. Weknow that the product oftwo four-

bit numbers cannot exceed 15 x 15 = 225, so an eight-bit location can hold

the product. On the other hand, the product of two eight-bit numbers may

be as large as 16bits. Therefore, to keep the original problem simple, we will

consider the problem of multiplying two four-bit numbers. Our pencil-and-

paper calculation is shown in Table 7-2. It uses the algorithm you used in

elementary school. This may not be the most efficient algorithm for the 6510,

but it is a start.

If you closely examine the work in Table 7-2, you will see that the

multiplicand appears once in the set of partial products for each binary one

in the multiplier. Corresponding to each binary zero in the multiplier there

is a zero in the set of partial products. Notice, also, that the multiplicand

is shifted left in successive partial products.
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Table 7-2. Multiplying two

Hexadecimal

$C

X

$B

= $84

four-bit numbers.

Binary

1100

X

1011

iioo7
1100 I

0000 /
iioo A

10000100

Multiplicand

Multiplier

Partial products

Product

The algorithm suggested by the calculation illustrated in Table 7-2 and our

analysis in the previous paragraph is:

1. Shift the multiplier right into the carry flag.

2. If the carry is set by this shift, add the partial product; otherwise, skip to step 3.

3. Shift the multiplicand left to give a new partial product.

4. If this shift produces a zero, the multiplication is finished; otherwise, return

to step 1.

This algorithm is implemented in 6510 assembly language in Example 7-8.

The accumulator holds the sum of the partial sums and, therefore, the pro

duct when the calculation is finished. Step 1 in our algorithm is accomplished

on line 11 in the program in Example 7-8. Step 2 in our algorithm is accom

plished with lines 12 through 14, while step 3 is accomplished with line 15.

Finally, step 4 in the algorithm is accomplished with line 16. The product is

in the accumulator at this point, and it is saved by storing it in memory with

line 17.

Example 7-8. A Four-Bit Multiplication Routine

Object: Multiply the number in location $00FD by the number in location

$00FC. Store the product in location $00FE.

10

11

12

13

14

15

16

17

18

MULTPL

UP

DOWN

LDA

LSR

BCC

CLC

ADC

ASL

BNE

STA

RTS

#00

+MLTP

DOWN

+MCND

+MCND

UP

+PROD

;CLEAR A TO HOLD PRODUCT.

;SHIFT MULTIPLIER INTO C.

;DO NOT ADD IF C IS CLEAR.

;ADD (SHIFTED) MULTIPLICAND TO

;FORM PARTIAL SUM.

;SHIFT MULTIPLICAND LEFT.

;STOP WHEN MULTIPLICAND SHIFTS TO 0.

;STORE THE PRODUCT.

cooo

C002

C004

C006

C007

C009

C00B

C00D

C00F

A9

46

90

18

65

06

DO

85

60

00

FC

03

FD

FD

F5

FE

Having succeeded in finding a multiplication algorithm, we would like to

extend it to handle multiplication of eight-bit numbers. In this case, the pro

duct can be as large as a 16-bit number, so we will need two bytes of memory

to hold the product. The program in Example 7-9 accomplishes our objective.

It differs from the program in Example 7-8 in two details. First, the product

is contained in a two-byte number called PRODLO and PRODHI. PRODHI



10 MLTPLY

11

12

13 UP

14

15

16

17 DOWN

18

19

20

21

22

LDA

STA

LDY

LSR

BCC

CLC

ADC

LSR

ROR

DEY

BNE

STA

RTS

#00

+PROPLO

#8

+ MLTP

DOWN

+MCND

A

+PRODLO

UP

+PRODHI
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holds the most-significant byte of the product. Second, rather than shift

ing the multiplicand left, the partial sum is shifted and rotated right. An

analysis of the program will show that this avoids the necessity of doing

a two-byte sum.

Example 7-9. An Eight-Bit Multiplication Routine

Object: Multiply the eight-bit number in $00FC by the eight-bit number in

$00FD. Store the product in locations $00FE (LSB) and $00FF (MSB).

;CLEAR. A TO HOLD HIGH BYTE. C000 A9 00

;CLEAR LOW BYTE OF PRODUCT. CO02 8 5 FE

;Y IS USED TO COUNT EIGHT LOOPS. C004 A0 08

;SHIFT MULTIPLIER INTO CARRY. C006 46 FC

;DO NOT ADD IF C = 0. C008 90 03

;ADD MULTIPLICAND TO C00A 18

;FORM PARTIAL SUM. CO0B 65 FD

;SHIFT THE PARTIAL SUM RIGHT. C00D 4A

;ROTATE LOW BYTE RIGHT. C00E 66 FE

C010 88

;REPEAT EIGHT TIMES. C011 DO F3

;FINALLY SAVE THE HIGH BYTE. C013 85 FF

C015 60

To digress momentarily, it is a common fallacy that everything has a sim

ple explanation. If programming is so simple, why is the demand for good

programmers so large? As a matter of fact, many worthwhile programs are

extremely difficult to understand, having evolved through many stages of

pencil-and-paper calculations, with several programmers contributing im

provements. Programs that fall in the "very difficult'' category include the

eight-bit multiplication program just described and the remaining programs

in this chapter.

What follows is the best and most serious advice I can give you if your aim

is to understand these programs. Purchase a thick pad of legal-size paper,

several pencils, and a large eraser. When you have several hours of uninter

rupted time, perform a number of the calculations by hand, using either four-

bit or eight-bit numbers. Do not worry about how the computer program is

going to accomplish the same task. Next, use pencil and paper to follow the

steps in the program you are trying to understand. On your pad of paper,

duplicate the effect of each instruction in the program.

Do not be frustrated if your progress is slow. Your understanding will in

crease slowly until you feel confident that you understand the program. Two

days later you will have forgotten everything, but with some additional study

it will come back to you. Do not either overestimate the ease with which others

may learn or underestimate the effort you must put forth. A college-level

assembly-language course occupies a full semester, and the end result is a

beginning programmer rather than an expert.

Returning to our main discussion, our binary division program is a result

of a procedure similar to the one described for multiplication. That is, we

started by performing some binary divisions with pencil and paper, then we
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tried to express our calculations as an algorithm that could be performed by

the 6510 microprocessor, and finally we translated this algorithm into

assembly language. Follow the advice given above if you wish to understand

the algorithm and the program.

Example 7-10. A Program to Divide Two Eight-Bit Numbers

Object: If the divisor is in $00FD and the dividend is in $00FC, find the quo

tient and place it in $00FE.

10

11

12

13

14

15

16

17

18

19

20

DIVIDE

UP

DOWN

LDA

LDY

ASL

ROL

CMP

BCC

SBC

ROL

DEY

BNE

RTS

#00

#8

+DIVDND

A

+DIVSOR

DOWN

+DIVSOR

+QUOTNT

UP

;Y WILL COUNT EIGHT LOOPS.

;SHIFT AND ROTATE DIVIDEND

;INTO THE ACCUMULATOR.

;COMPARE WITH DIVISOR.

;DIVISOR TOO LARGE, DO NOT SUBTRACT.

;SUBTRACT DIVISOR.

;ROTATE CARRY INTO QUOTIENT.

;REPEAT EIGHT TIMES.

cooo

C002

C004

C006

C007

C009

C00B

C00D

C00F

C010

C012

A9

A0

06

2A

C5

90

E5

26

88

DO

60

00

08

FC

FD

02

FD

FE

F2

We conclude this section with two programs that we provide, without ex

planation, because of their usefulness. These are difficult programs to under

stand, but they are valuable to have, so we include them here for reference.

The algorithms are described byJohn B. Peatman in his book Microcomputer-

Based Design (McGraw-Hill, New York, 1977), Chapter 7.

The first of these programs, listed in Example 7-11, converts an eight-bit

binary number to a binary-coded decimal (BCD) number. The binary number

is in location $00FC, and the program returns with the least-significant byte

of the BCD number in location $00FD and the most-significant byte of the BCD

number in location $00FE. Since an eight-bit binary number can be as large

as 255, and each memory location can hold only two BCD digits, we need one

location to hold the two least-significant BCD digits and another memory loca

tion to hold the single most-significant digit.

Example 7-11. A Binary-to-BCD Conversion Routine

Object: Convert the binary number in location $00FC to a BCD number in

locations $00FD (LSB) and $00FE (MSB).

1 ;EXAMPLE

2 BINUM

3 BCDLO

4 BCDHI

5 BCD

6

7

8 ;

9

10 BCD

11

12

13

14

EQU

EQU

EQU

EQU

SED

LDA

STA

STA

LDY

7-11

$FC

$FD

$FE

$C000

#00

+BCDLO

+BCDHI

#08

/

;PERFORM ADDITION IN DECIMAL MODE.

;CLEAR BCD NUMBER LOCATIONS.

;LOOP EIGHT TIMES.

00FC

00FD

00FE

COOO

COOO

C001

C003

C005

C007

F8

A9

85

85

A0

00

FD

FE

08



130 7DShift and Rotate Routines

15 WHERE

16

17

18

19

20

21

22

23

24

25

ASL

LDA

ADC

STA

LDA

ADC

STA

DEY

BNE

CLd

RTS

+BINUM

+BCDLO

+BCDL0

+BCDL0

+BCDHI

+BCDHI

+BCDHI

WHERE

;SHIFT BINUM INTO CARRY.

;ADD BCD NUMBER TO ITSELF.

;ADD HI BYTE TO ITSELF.

;CLEAR DECIMAL MODE.

C009 06

C00B A5

C00D 65

C00F 85

C011 A5

C013 65

C015 85

C017 88

C018 DO

C01A D8

C01B 60

FC

FD

FD

FD

FE

FE

FE

EF

As an example of an application of the program in Example 7-11, suppose

you wish to output to the screen the numbers obtained from the game pad

dles. These numbers are obtained from the POTX andPOTY registers on the

SID chip, and they are binary numbers. Human beings like their numbers

in decimal. The program in Example 7-11 could be used to output the numbers

in decimal.

The last program in this section reverses the process in Example 7-11. It takes

a two-digit BCD number and changes it to a binary number. TheBCD number

is located in $00FD. At the completion of the program, the binary number is

in location $00FC. Human beings like to input numbers in decimal, but the

computer likes to work with numbers in binary. The routine in Example 7-12

provides a way to input a BCD number and have it converted into a binary

number.

Note the use of the shift and rotate instructions in Examples 7-11 and

7-12.

Example 7-12. A BCD-to-Binary Conversion Routine

Object: Convert the two-digit BCD number in location $00FD into a binary

number in location $00FC.

1

2

3

4

5

6
7
1

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

;EXAMPLE

BINUM EQU

BCD EQU

BINARY EQU

7

BINARY LDA

STA

UP LSR

ROR

BCS

LDA

AND

BEQ

FIX LDA

SEC

SBC

STA

BCS

FINISH RTS

7-12

$FC

$FD

$C000

#$80

+BINUM

+BCD

+BINUM

FINISH

+BCD

#$08

UP

+BCD

#03

♦BCD

UP

;START BINUM WITH 1 IN BIT 7.

;DIVIDE BCD NUMBER BY TWO.

;QUOTIENT INTO BINUM.

;TASK IS FINISHED.

;DO WE NEED A FIX?

;ONE IN BIT THREE?

;NO, SO RETURN TO DIVIDE AGAIN.

;YES, FIX THE BCD NUMBER.

OOFC

OOFD

COOO

COOO

C002

C004

C006

C008

COOA

COOC

COOE

C010

C012

C013

C015

C017

C019

A9

85

46

66

BO

A5

29

FO

A5

38

E9

85

BO

60

80

FC

FD

FC

OF

FD

08

F4

FD

03

FD

EB
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V. Summary

The shift and rotate instructions are used to examine a code in a memory

location or the accumulator bit by bit. The ASL instruction moves a code left

one bit, placing a zero in bit zero, and placing bit seven in the carry flag. Eight

ASL instructions operating on the same register or memory location will clear

it. The LSR instruction is identical to the ASL instruction, except that it moves

a code one bit to the right. Bit seven receives a zero, and bit zero is transferred

into the carry flag. The ROL and ROR instructions are similar, except the

number in the carry flag is moved back to bit zero (ROL) or bit seven (ROR).

Nine successive operations of a ROL or ROR instruction on the same register

or memory location will restore the code in that location to its original value.

A ROL instruction is frequently used in conjunction with an ASL instruc

tion. The ASL instruction moves a bit into the carry flag and the ROL instruc

tion moves the carry flag into another register or memory location. Similar

statements can be made for the ROR and LSR instructions. Shift and rotate

left instructions can be used to perform multiplications by powers of two,

while shift and rotate right instructions canbe used to divide by powers oftwo.

Shift and rotate instructions are frequently found in advanced arithmetic

and code-conversion routines: multiplication and division, for example. Trial

and error, patience, and perseverance are required to write routines such as

these.

VI. Exercises

1. To help you understand the effect of the shift and rotate instructions, you

should run the demonstration program in Example 7-13. It makes use of the

CAI routines described in connection with Example 4-13, and you must load

the codes in Table 4-5. By now you should have these codes stored on tape

or disk so that you can simply read the CAI program into memory.

Example 7-13. A Program to Demonstrate the Shift and Rotate

Instructions

Object: Display a code and the contents of the P register as the code is shifted

or rotated.

C000 20 0D Cl

C003 20 6C Cl

C006 0A

C007 20 C5 Cl

C00A B8

C00B 50 F6

10 DEMO

11 LOOP

12

13

14

15

16 ;

17

18

19

JSR

JSR

ASL

JSR

CLV

BVC

GETONE

DISPLAY

A

WAITKY

LOOP

;GET A BYTE OF DATA.

;DISPLAY THE NUMBER.

;SHIFT THE NUMBER.

;WAIT FOR KEY DEPRESSION.

;FORCE A BRANCH

;BACK TO LOOP.
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Notice in Example 7-13 that the most important instruction has been

delineated by spaces.

Load this program and the CAI program, then call this programfromBASIC

with a SYS 49152 command. Type in the number $41. You will see the number

depressions result in successive shifts. You should study what happens to

the code after each shift, and you should note how the C, N, and Z flags
change.

2. Replace the ASLA instruction in Example 7-13 with aROLA instruction. Only

one op code needs to be changed (refer to Table 7-1). Run the program again

and enter any number, such as $37. Observe and be able to explain what hap

pens with successive key presses.

3. Repeat the previous two exercises with LSRA andRORA instructions. With

sufficient experimentation, you should have a good intuitive feeling for the

shift and rotate instructions.

4. Modify the program in Example 7-1 to work with shift and rotate right instruc

tions. Test it with POKEs and PEEKs.

5. Write a program that uses subroutine GETBYT in Example 7-4 to place

numbers into zero-page locations $FC and $FD. Continue the program with

a subroutine call to the program in Example 7-8, the four-bit multiplication

program. End the program by using subroutine PRBYTE in Example 7-3 to

output the number in zero-page location $FE. You now have a program that

inputs two numbers, multiplies them, and outputs the answer. Use this pro

gram to input two four-bit hexadecimal numbers ($03 and $02, for example)

and output the product. What do you get whenyou multiply $05 by $02? You

should get $0A. Perhaps you expected to get 10.

6. Modify the program you just wrote to call the eight-bit multiplication routine

in Example 7-9. You should also modify the program to output both bytes of

the product with the most-significant byte first. Practice some hexadecimal

multiplications.

7. Modify the programs you just wrote to test the division routine in Example

7-10. What happens whenyou divide a smaller numberby a larger? Whathap

pens when you divide by zero?

8. Use GETBYT, PRBYTE, and the routine in Example 7-11 to input a binary

number and output its decimal equivalent.

9. Use GETBYT, PRBYTE, and the routine in Example 7-12 to input a BCD

number and output its binary equivalent.

10. Draw a flowchart for the multiplication and division routines in Examples 7-9

and 7-10, respectively.



Indexed Addressing Modes

I. Introduction

At this point in your study of assembly language, you are acquainted with

most of the instructions in the 6510 instruction set. You have also made use

of at least six of the 13 addressing modes, namely, immediate, absolute, zero page,

accumulator, implied, and relative. Examine the instruction set summarized in

Table 2-1 and observe the set of indexed addressing modes with these column

headings: (IND,X); (IND),Y; Z PAGE,X; ABS,X; ABS,Y; and Z PAGE,Y.
These are the addressing modes we will study in this chapter. As you will

see> these addressing modes enable the 6510 to handle enormous amounts

of data in short periods of times.

To provide some motivation, consider the simple task of clearing the first

$19 (25) write-only registers of the 6581 SID chip, a task that should be per

formed before programming the chip to make sounds. In BASIC, this task

may be accomplished with this program:

10 FOR X = 0 TO 24

20 POKE 54272 + X, 0

30 NEXT

If you restrict yourself to the addressing modes you have learned, an

assembly-language program to clear these registers would appear as follows:

LDA #00

STA $D400 ;Clear register zero.

STA $D401 ;Clear register one.

STA $D418 ;Clear register $18.

This program requires 25 STA instructions and 77 bytes of memory. It should

be obvious that there must be a better way, and there is. Here it is:

LDX #00 ;Start X at zero.

LDA #00 ;A holds number to.be placed in registers.

LOOP STA $D400,X ;Store 0 in location $D400 + X

133
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INX ;Next X. Replace X with X + 1.

CPX #$19 jlf X => $19 then C = 1; otherwise C = 0.

BCC LOOP ;Branch if C = 0 (X < $19).

You should carefully compare this program with the BASIC program listed

above. Note that $D400 = 54272. Like the BASIC program, it will go through

the loop $19 (25) times, starting with X = 0 and ending with X = $18 (24).

When X in either program reaches $19, the programs exit from their loops.

The most important comparison you can make with the BASIC program is betwieen

the

POKE (54272 + X), 0 ,

and the

STA $D400,X

instructions because they perform identical functions.

The addressing mode indicated by the

STA $D400,X

notation is called the absolute indexed by X addressing mode, and it is ab

breviated to "ABS,X" in the column headings in Table 2-1. Knowing that the

STA $D400,X instruction performs the same function as the POKE instruc

tion in our BASIC example, you must realize that the STA instruction in this

addressing mode stores the number in the accumulator at the address found

by adding the number in the X register to the address $D400.

With some motivation and a brief and intuitive introduction to indexed ad

dressing, we turn to a more formal presentation.

II. The Absolute Indexed Addressing Modes

The two absolute indexed addressing modes, ABS,X and ABS,Y, are iden

tical except that in the first case the number in the X register is used while in

the second case the number in the Y register is used. We will discuss the ABS,X

addressing mode.

Although there are many instructions that make use of the ABS,X address

ing mode, we will use the STA instruction in our explanation. Theform of an

instruction using the ABS,X addressing mode in an assembly language

program is

STA ADDR,X

In this case, the symbol ADDR stands for a 16-bit address that is said to be

indexed by X, the number in the X register. Symbols other than ADDR may

be used. When executed, the STA ADDR,X instruction will cause the number

in the accumulator to be stored in the memory lpcation whoseaddress is the sum

of the 16-bit number symbolized by ADDR and the 8-bit index in the X register.



II. The Absolute Indexed Addressing Modes 135

Suppose ADDR symbolizes $D400. Then the assembled version of the in

struction is

STA ADDR,X 9D 00 D4

where the op code $9D is obtained from the instruction set in Table 2-1, or

it is provided by your assembler. Notice that ADDR symbolizes a 16-bit ad

dress, called the base address, that consists of a low-order byte called B^lL for

base address low and a high-order byte called BAH for base address high.

In this example, BAL = $00 and BAH = $D4. Observe that the op code is

followed by the base address, with BAL first and BAH second, forming an

instruction consisting of three bytes.

The address of the operand of the STA instruction is found by adding the

number in the X register to the address BAH:BAL. Recall that we identify the

address of the operand of an instruction with two bytes, ADH and ADL. Now

we can diagram the ABS,X addressing mode in Figure 8-1, and we can neatly

summarize these concepts as follows:

ADDRESS PROGRAM MEMORY MEMORY

$C005

$C006

$C007

Figure 8-1. Diagram of the absolute indexed by X addressing mode.

• The ABS,X addressing mode is a three-byte instruction. The first byte is the op

code. The next two bytes, BAL and BAH, form a 16-bit address.

• The address of the operand, ADH:ADL, is found by adding X to the address

BAH:BAL. That is,

ADH:ADL = BAH:BAL + X

• In other words, the ADL of the operand is the sum of the number in the X

register and the second byte of the instruction.

• TheADH of the operand is the third byte of the instruction plus any carry from

the sum of X and the second byte.

Example 8-1 illustrates some of these ideas for the LDA instruction when

it uses the ABS,X addressing mode.

ABS, X OP CODE

BASE ADDRESS LOW

BASE ADDRESS HIGH -

BAH:BAL + X =

ADH:ADL
OPERAND

i
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Example 8-1. Calculating the Address of the Operand with

the ABS,X Addressing Mode

Assemble an LDAADDR,X instruction ifADDR is $C020. At what address

is the operand located if X = $7F? If X = $E5?

Solution: Refer to Table 2-1 to find the op code. The assembled instruction is

LDA ADDR,X BD 20 C0

If X = $7F, the operand is located at $C020 + $7F = $CQ9F. If X = $E5, the

operand is located at $C020 + $E5 = $C115. Notice in this last case that there

is a carry from the sum of X and BAL.

Example 8-2 illustrates a program to clear the first $19 registers of the SID

chip. Notice how the loop structure in Example 8-2 varies from the assembly-

language program described in the introduction. In this case, the INX instruc

tion is placed before the STA ADDR,X instruction, so X must be initialized to

-1 ($FF). The advantage, if any, to this type of loop structure is that the loop

ends when X is exactly equal to the ADL of the last register to be cleared.

Example 8-2. A Program to Illustrate the ABS,X Addressing

Mode

Object: Clear the write-only registers of the SID chip.

10 START LDX #$FF ;START X AT -1. C000 A2 FF

11 LDA #00 ;CLEAR A. C002 A9 00

12 LOOP INX ;NEXT X. (THE FIRST X IS ZERO.) C004 E8

13 STA ADDR,X ;ADH:ADL = BAH:BAL + X = $D400+X. C005 9D 00 D4

14 CPX #$18 ;IS X=>$18? YES, C=l. NO, C=0. C008 E0 18

15 BCC LOOP ;C = 0, CLEAR MORE REGISTERS. C00A 90 F8

16 RTS ;C = 1, TASK IS FINISHED. C00C 60

Example 8-3 illustrates the use of the ABS,Y addressing mode to accomplish

the same objective as the program in Example 8-2. The ABS,Y addressing

mode works in exactly the same way as the ABS,X addressing mode, except

that the number in the Y register is used rather than the number in the X

register. Example 8-3 illustrates yet a third way of constructing the loop. In

this program, the registers are cleared starting with the register with the largest

address, $D418, and ending with the register whose address is the same as

BAH:BAL, $D400. Choose the loop structure with which you feel most

comfortable.

A page of memory consists of 256 memory locations that all have the same

ADH. For example, page $C0 of memory consists of the locations $C000 to

$C0FF. An instruction such as

AND ADDR,X

that uses the absolute indexed addressing mode will reference one page of

memory ifADDR symbolizes a page boundary. A page boundary is any address
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whose ADL is $00; for example, $C800. Of course, if the base address of

an instruction using the ABS,X addressing mode is not a page boundary,

then, for a certain value of X, a page crossing will occur. A page crossing

was illustrated in Example 8-1, when the base address was $C020 and X

was $E5. In this case, the base address is in page $C0 and the location

referenced by the instruction is in page $C1. Any time a page crossing

occurs, the execution time of the instruction is one clock cycle more than

if no page crossing occurs.

Example 8-3. A Program to Illustrate the ABS,Y Addressing

Mode and a Modified Loop Structure

Object: Clear the write-only registers of the SID chip.

10

11

12

13

14

15

START

LOOP

LDY

LDA

STA

DEY

BNE

RTS

#?19

#00

ADDR-1,Y

LOOP

;$19 IS NUMBER

;CLEAR A.

;CLEAR REGISTER

;NEXT Y. STEP

;IS Y = 0? NO,

OF REGISTERS CLEARED.

AT $D3FF+Y.

= -1.

RETURN TO LOOP.

;YES, TASK IS FINISHED.

cooo

C002

C004

C007

C008

C00A

A0

A9

99

88

DO

60

19

00

FF D3

FA

Regardless of whether a page crossing occurs or not, the maximum number

of locations that can be referenced with either the ABS,X or ABS,Y address

ing modes with a single base address is 256 locations.

Suppose your task is to clear the Commodore 64 screen memory. Screen

memory consists of 1,000 memory locations starting at $0400. The 1,000 comes

from the fact that the screen consists of25 rows and 40 columns, and one byte

of memory is used to identify the character in each of these 1,000 screen loca

tions. It is impossible to reference 1,000 memory locations with the ABS,X

addressing mode with a single base address. The program in Example 8-4 illus

trates how this problem maybe solved. We have used four different base ad

dresses. Each base address is used to reference 250 locations. Of course, if

many pages of memory must be modified, for example, when using bit

mapped graphics, the technique illustrated in Example 8-4 becomes awkward,

and another addressing mode will be more efficient.

Example 8-4. Clearing the C-64 Screen Memory

Object: Clear the 1,000 memory locations starting at $0400.

10 CLRSCN

11

12 LOOP

13

14

15

16

17

18

LDA

LDX

DEX

STA

STA

STA

STA

BNE

RTS

#$20

#250

SCN,X

SCN+250,X

SCN+500,X

SCN+750,X

LOOP

;$20 IS 5

;START X

;NEXT X.

;ADH-ADL

;ADH-ADL

;ADH-ADL

;ADH-ADL

;IF X <>

SCREEN CODE FOR A SPACE.

AT 250.

STEP -1.

= SCN + X.

= SCN + 250 + X.

= SCN + 500 + X.

= SCN + 750 + X.

0 THEN GO TO LOOP.

C400

C402

C404

C405

C408

C40B

C40E

C411

C413

A9

A2

CA

9D

9D

9D

9D

DO

60

20

FA

00

FA

F4

EE

Fl

04

04

05

06
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Example 8-4 also illustrates some tricks that your assembler can perform

for you. On line 11 we have 250 in decimal in the operand field. The assembler

will convert this to the hexadecimal $FA found in the machine-language pro

gram. Another trick is illustrated in lines 13 through 15. The operand field

in line 13 contains SCN+250. Since the assembler has been told what SCN

is, namely, $0400, the assembler will convert 250 to hexadecimal and add it

to $0400; the base address for the STA instruction on line 13 then becomes

$04FA. In other words, the assembler can handle a certain amount of

arithmetic in the operand field. Remember, it is the assembler that makes the

necessary calculations.

We will provide additional examples of this addressing mode at the end

of this chapter. We turn next to a study of the zero-page indexed addressing

mode.

III. The Zero-Page Indexed Addressing Mode

The zero-page indexed addressing mode is almost the same as the absolute

indexed addressing mode, except that the operand is always in page zero of

memory. There are two such modes, depending on which index register, X

or Y, is used as an index. The two modes are designated Z-PAGE,X and

Z-PAGE,Y. Only two instructions, LDX and STX, use the Z-PAGE,Y mode.

The Z-PAGE,Y mode is rarely used, but it is worth keeping in mind that it is

available. It works in the same way as the Z-PAGE,X addressing mode that
we will now describe.

Consider the LDA instruction in its Z-PAGE,X addressing mode. Its

assembly-language form is

LDA BAL,X

which is exactly the same as the form of the ABS,X addressing mode. To

distinguish the ABS,X and the Z-PAGE,X modes, some assemblers re

quire a left-arrow symbol before the BAL symbol. Other assemblers will

automatically use the Z-PAGE,X mode if BAL is an address in page zero

of memory. The Z-PAGE,X addressing mode may be summarized as

follows:

• The first byte of an instruction using the Z-PAGE,X addressing mode is the op

code.

• The second byte of the instruction is the low byte of a zero-page address, called

BAL. The high byte, BAH, is, of course, zero.

• The operand is found in the zero-page address whose ADL is BAL + X. The

high byte of the address of the operand is, of course, zero.

This mode is diagrammed in Figure 8-2. In symbols,

ADL = BAL 4- X

ADH = $00

operand = (ADH:ADL)
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ADDRESS PROGRAM MEMORY ZERO PAGE MEMORY

$C002

$C003

Z PAGE, X OP CODE

BASE ADDRESS LOW
BAL + X = ADL

OPERAND

Figure 8-2. Diagram of the zero-page indexed by X addressing mode.

where BAL is the second byte of the instruction, X is the number in the X

register, ADL is the low-order byte of the zero-page address where the

operand is found, and ADH is understood to be $00. We have used paren

theses "( )" to mean "the contents of/7 This is the traditional use of paren

theses in assembly-language programming. Thus, the symbolism "operand

= (ADH:ADL)" is read, "the operand is the contents ofthe memory location

with address ADH:ADL."

It is important to realize that any carry from the sumBAL + X is disregard

ed. In other words, only memory locations in page zero will be referenced.

Example 8-5 illustrates some of these ideas.

Example 8-5. Locating the Operand in the Z-PAGE,X

Addressing Mode

Assemble the instruction

LDA BAL,X

if the Z-PAGE,X addressing mode is desired and BAL is $80. Where will the

operand be located if X = $1D? If X = $81?

Solution: The assembled version of the instruction is

LDA BAL,X B5 80

If BAL is $80 and X is $1D, then

ADL = $80 + $1D = $9D

so the operand is in location $009D. If X is $81, then

ADL = $80 + $81 =

so the operand is in location $0001. Note that this case illustrates the situa

tion in which the carry from the sum of BAL and X is ignored.

The program in Example 8-6 illustrates a use for Z-PAGE,X addressing. The

addresses in Figure 8-2 correspond to the program in this example. This pro

gram outputs the ASCII codes stored in a table in page zero of memory start

ing at $00F8 and ending at $00FF. The codes are sent to the operating system
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subroutine CHROUT, which prints the characters on the screen. The par

ticular characters we have chosen to print on the screen are the symbols for

the flags in the processor status register, N, V, D, B, I, Z, and C. We chose

to output a space for the unused flag bit.

Example 8-6. A Program to Illustrate the Z-PAGE,X

Addressing Mode

Object: Output the letter symbols for the flags in the P register.

10 ZPAGEX

11 LOOP

12

13

14

15

16

17

18

19

20

21

22

23

LDX #0

LDA +BAL,X

JSR CHROUT

INX

CPX #8

BCC LOOP

RTS

EQU $F8

BYT 'NV

BYT $20

BYT 'BDI

BYT 'ZC

;START X AT ZERO.

;GET CHARACTER FROM LIST.

;OUTPUT IT TO SCREEN.

;NEXT X.

;IF X=>8, THEN C=l; OTHERWISE C=0.

;BRANCH TO LOOP IF C=0.

COOO

C002

C004

C007

C008

C00A

COOC

00F8

00F8

00FA

00FB

00FE

A2

B5

20

E8

E0

90

60

4E

20

42

5A

00

F8

D2 FF

08

F6

56

44 49

43

Notice that our assembler was used to define the data to be placed in the

table that the program sends to subroutine CHROUT. The EQU directive at

the end of the listing in Example 8-6 is not a new instruction. A directive is a

command that the assembler understands: it will not be recognized by the

6510. In Example 8-6, the EQU directive informs the assembler that the start

ing address of the table of codes is $00F8. Also observe that we used the

assembler's BYT directive. This directive is used to define the codes that are

placed in the table. Study the specifications for these directives that appear

in your assembler manual.

To test the program in Example 8-6J^egin by loading the codes in the table.

You can use your assembler or POKE them into memory, starting at location

$00F8 (248). In decimal, the codes are 78, 86, 32, 66, 68, 73, 90, and 67 for N,

V, space, B, D, I, Z, and C, respectively. Then, when the program is also in

memory, enter SYS 49152 to execute it.

IV The Indirect Indexed Addressing Mode

The indirect indexed addressing mode is the most powerful addressing

mode in the 6510 instruction set. It may be difficult to grasp, but it is worth

the effort to understand this addressing mode. At the very least, do not give

up trying to understand it until you have studied the sample programs.

Sometimes programs are more easily understood than their explanations. The
indirect indexed addressing mode is used in applications that require the
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manipulation of large amounts of data and it is used in a variety of graphics

applications. This mode is identified in the instruction set in Table 2-1 by the

notation "(IND),Y."

The essential idea of indirect addressing is that the instruction does not specify

the address of the operand, but the instruction does contain information about

where the address of the operand is stored.

In other words, the address of the operand is not stored in the program,

but it is stored elsewhere in memory, specifically in page zero, where it may

be modified. Indexing this stored address means that the number in the Y

register will be added to it, just as in the case of the ABS,Y addressing mode.

Pay close attention to what follows.

Consider, for example, the CMP instruction in its indirect indexed address

ing mode. The assembly-language form of this instruction is

CMP (IAL),Y

Instructions using the (IND),Y mode are two-byte instructions. The first byte

is the op code. The second byte, symbolized by IAL, is the low byte of an ad

dress in page zero of memory. Of course, the high byte of this address is $00

because it is in page zero. IAL is an acronym for indirect address low. The

number stored in IAL is the base address low, BAL, of a location in memory.

The base address high, BAH, is stored in the zero-page memory location just

above IAL, namely, at IAL + 1. '

Thus, the zero-page memory locations IAL and IAL + 1 contain an address

that we call BAH:BAL.

Although we have not yet located it, we are closing in on the elusive operand

of the indirect indexed addressing mode. In fact, if the number Y in the Y

register is added to BAL and any carry from this sum is added to BAH, then

we have the address of the operand, which we call ADH:ADL.

Let us try to summarize this in English before going to symbols. The first byte

of an instruction using the (IND),Y addressing mode is the op code. The second

byte of the instruction is a zero-page address, called IAL. That is the end of the

information in the program itself. In IAL is a number called BAL. In IAL + 1

is a number called BAH. The combination, BAH:BAL, is a 16-bit address. Ad

ding Y to this 16-bit address gives ADH:ADL, the 16-bit address of the operand.

This addressing mode is diagrammed in Figure 8-3. The addresses in Figure

8-3 are related to the program in Example 8-8.

ADDRESS PROGRAM MEMORY PAGE ZERO IN MEMORY MEMORY

$C869 (IND),YOPCODE

$C86A INDIRECT ADDRESS LOW
IAL

BASE ADDRESS LOW

I BAH:BAL + Y

IAL+ 1 BASE ADDRESS HIGH

OPERAND

Figure 8-3. Diagram of the indirect indexed addressing mode.
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Now we try a symbolic description of this mode, then we will give an ex

ample that will clarify this discussion. Recall that we use parentheses to mean

"the contents of" the memory location represented by the symbol inside the

parentheses. Thus, (IAL) means "the contents of IAL."

The indirect addressing mode can be described symbolically as follows. Let

IAL represent the second byte of the instruction. Then

BAL = (IAL)

BAH = (IAL + 1)

ADH:ADL = BAH:BAL + Y

operand = (ADH:ADL)

We can be even more concise by eliminating BAL and BAH. Thus

ADL = (IAL) +Y

ADH = (IAL + 1) + C

(operand) = (ADH:ADL)

where C is the carry from the first sum: it is not associated with the carry flag

in the P register.

Thus, the instruction

STA (IAL),Y

literally means "store the number in the accumulator at the address found

by adding the contents o/IAL to Y and any carry from this sum to the contents

ofIAL + l/<

Here is how the microprocessor executes the STA (IAL),Y instruction. After

it fetches and interprets the op code, it fetches IAL from program memory.

It then fetches the numbers fromIAL and IAL + 1, in turn. These two eight-

bit numbers are placed together to form the 16-bit number BAH:BAL. The

number in the Y register is added to this 16-bit number to form the 16-bit ad

dress of the operand, ADH:ADL. Finally, the microprocessor fetches the

operand from this address and places it in the accumulator.

An example is overdue. Study Example 8-7.

Example 8-7. Locating the Operand in the (IND),Y Addressing

Mode

Assemble the EOR (IAL),Y instruction, where IAL is assumed to be $FB.

What is the address of the operand if IAL contains $00, IAL + 1 contains $20,

and the number $3F is in the Y index register?

Solution: Using Table 2-1 to locate the EOR op code gives

EOR (IAL),Y 51 FB

for the assembled form of the instruction. Since (IAL). = ($00FB) = $00, then

BAL = $00. ADL = BAL + Y = $00 + $3F = $3F, so the ADL of the operand

is $3F. There is no carry from this sum. Since (IAL + 1) = ($00FC) = $20, then
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BAH = $20. Since there was no carry from the first sum, the ADH of the

operand is $20. The operand is in location $203F, and it will be EORed with

the number in the accumulator. In symbols:

$00 = (IAL)

$20 = (IAL + 1)

$203F = $2000 + $3F

operand = ($203F)

Our first example of a program that uses the (IND),Y addressing mode is

shown in Example 8-8. It can be used to input hexadecimal codes and store

them in memory. The program begins by calling subroutine GETBYT (Exam

ple 7-4) and storing the two-digit hexadecimal number in location IAL + 1.

This will be the ADH of the location that is to receive the hexadecimal code.

Subroutine GETBYT is called a second time to get another two-digit hex

adecimal number to be stored in IAL. This second byte becomes the ADL of

the location that is to receive the hexadecimal code. The third time GETBYT

is called you input the number you want to store at the address that you just

input. The number is stored in that location by the STA (IAL),Y instruction

on line 19.

A useful modification of this program would allow you to input a starting

address and the number ofbytes to input. You would then input those bytes

and the program would return.

Example 8-8. A Program to Illustrate the (IND),Y Addressing

Mode

Object: Input an address and the byte to be stored at that address.

;GET A BYTE FROM THE KEYBOARD. C855 20 31 C8

;MAKE IT THE BAH. C858 85 FC

;GET ANOTHER BYTE FROM THE KEYBOARD. C85A 20 31 C8

;MAKE IT THE BAL. C85D 85 FB

;OUTPUT A SPACE. C85F A9 20

;CHROUT IS AT $FFD2. C861 20 D2 FF

;GET THE BYTE TO BE STORED.. C864 20 31 C8

;USE INDIRECT INDEXED MODE WITH Y=0. C867 A0 00

;STA AT ADL=(IAL)+Y, ADH=(IAL+1)+C. C869 91 FB

C86B 60

Our second programming example is shown in Example 8-9. It outputs a

page of memory starting at the address that is input with two calls to

subroutine GETBYT. The LDA instruction is used in the (IND),Y addressing

mode on line 18. The program also makes use of subroutine PRBYTE in Ex

ample 7-3. Notice that the zero-page locations used to hold BAH and BAL

must always be initialized in some manner before the indirect indexed address

ing mode can be used. Inboth Examples 8-8 and 8-9, they are initialized with

10

11

12

13

14

15

16

17

18

19

20

21

JSR GETBYT

STA +IAL+1

JSR GETBYT

STA +IAL

LDA #$20

JSR $FFD2

JSR GETBYT

LDY #0

7

STA (IAL),Y
;

RTS



10

11

12

13

14

15

16

17

18 LOOP

19

20

21

22

23

JSR GETBYT

STA +IAL+1

JSR GETBYT

STA + IAL

LDA #$20

JSR $FFD2

LDY #0

LDA (IAL),Y

JSR PRBYTE

INY

BNE LOOP

RTS
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information that is input from the keyboard. Notice how Y is incremented

in a LOOP in Example 8-9. Study this program until you are sure you under

stand how the section delineated by spaces works.

Example 8-9. Using the LDA Instruction in the (IND),Y

Addressing Mode

Object: Output a page of memory beginning at the address that is input from

the keyboard.

;GET A BYTE FROM THE KEYBOARD. C870 20 31 C8

;MAKE IT THE BAH. C873 85 FC

;GET ANOTHER BYTE FROM THE KEYBOARD. C875 20 31 C8

;MAKE IT THE BAL. C878 85 FB

;OUTPUT A SPACE. C87A A9 20

;CHROUT IS AT $FFD2. C87C 20 D2 FF

;START Y AT ZERO. C87F A0 00

;LDA FROM ADL=(IAL)+Y, ADH=(IAL+1)+C. C881 Bl FB

rOUTPUT THE BYTE TO THE SCREEN. C883 20 13 C8

;NEXT Y. C886 C8

;OUTPUT 256 BYTES. C887 DO F8

C889 60

The third example of the (IND),Y addressing mode illustrates how large

blocks of memory can be modified. We will discuss the bit-mapped mode

(BMM) of the VIC chip later, but before you can do bit-mapped graphics you

must clear a block of 8,000 memory locations; otherwise, garbage will appear

all over the screen. We are assuming the VIC chip is initialized so the pixels

(picture elements) are obtained from memory locations $2000 through $3FFF.

Later, we will illustrate how the initialization is accomplished.

The program in Example 8-10 illustrates how a short routine can be used

to modify thousands of memory locations. Examine the program and you will
observe that at the beginning (IAL) = $00 and (IAL + 1) = $20. Thus, the first

location to be cleared will be $2000. Lines 17 through 19 are used to clear one

page of memory. After line 19, the page number in IAL + 1 is incremented

from $20 to $21. Location IAL is never modified. Each time line 21 is executed

the page number is incremented, and another page is filled with zeros. The

program ends when the page number in IAL + 1 exceeds $3F. Again, you

should study the program until you understand how it works.

Example 8-10. A Program to Clear the Bit Map Screen

Object: Fill locations $2000 through $3FFF with zeros.

C430 A9 20

C432 85 FC

C434 A2 3F

C436 A9 00

C438 A8

C439 85 FB

10 CLEAR

11

12

13

14

15

16

LDA

STA

LDX

LDA

TAY

STA

#$20

+IAL+1

#$3F

#00

+ IAL

;BITS START AT $2000

;SET UP BASE ADDRESS HIGH

;BITS END IN PAGE $3F.

;ALL BITS WILL BE CLEARED

;START Y AT ZERO.

;SET BASE ADDRESS LOW.



17 LOOP

18

19

20

21

22

23

24

STA (IAL),Y

INY

BNE LOOP

INC +IAL+1

CPX +IAL+1

BCS LOOP

RTS
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;ADL = BAL + Y = (IAL) + Y. C43B 91 FB

;ADH = BAH = (IAL+1) + C. NEXT Y. C43D C8

;IF Y <> 0 THEN GO TO LOOP. C43E DO FB

;INCREMENT PAGE NUMBER. C440 E6 FC

;X - (IAL+1). ALL PAGES CLEARED? C442 E4 FC

;NO, CLEAR ANOTHER PAGE. C444 BO F5

;YES, TASK IS COMPLETE. C446 60

Our final example illustrates how indirect indexed addressing might be used

in a word processing application. The program is shown in Example 8-11. It

accepts characters from the keyboard, outputs the characters to the screen

so you can see what you have typed, and stores the character codes in a block

of memory starting at $4000 and extending upward until you terminate the

keyboard entry mode by pressing the Fl key on the Commodore 64. When

you exit the program by pressing the Fl key, the last element in the list will

be $85, the keyboard code for the Fl key. This enables you to find the end

of the list.

The numbers in IAL and IAL + 1 also identify the address of the last loca

tion to receive a character. Numbers that identify a particular location in

memory are sometimes called pointers. You can regard the 16-bit number

stored in IAL and IAL + 1 as a pointer. When you exit the program in Exam

ple 8-9, the pointer identifies the last location filled with a character code.

Notice that in this example the indexY in the (IND),Y addressing mode was

kept at zero, and the number in IAL was modified. Contrast this with the pro

gram in Example 8-10, where Y was incremented but the number in IAL was

zero.

Example 8-11. A Program to Stone Keyboard Codes in Memory

Object: Accept codes from the keyboard and store them in memory star

ting at $4000.

10 START

11

12

13

14 ENTER

15

16 ■

17

18

19

20.

21

22

23

24

25

26

27 OUT

LDA #$40

STA +IAL+1

LDA #00

STA +IAL

JSR GETIN

BEQ ENTER

STA +TEMP

JSR CHROUT

LDA +TEMP

LDY #00

STA (IAL),Y

CMP #$85

BEQ OUT

INC +IAL

BNE ENTER

INC +IAL+1

BNE ENTER

RTS

;INITIALIZE IAL+1.

;INITIALIZE IAL.

;GET A KEYBOARD CHARACTER.

;WAIT FOR NON-ZERO ENTRY.

;STORE A HERE FOR A MOMENT.

;OUTPUT THE CHARACTER.

;GET A BACK AGAIN.

;USE (IND),Y MODE WITH Y=0.

;STA AT ADL=(IAL), ADH=(IAL+1).

;IS IT Fl KEY?

;YES, THEN-QUIT.

;INCREMENT (IAL).

;GET ANOTHER CHARACTER.

;IF (IAL)=0 THEN INCREMENT (IAL+1)

;GET MORE CHARACTERS.

;FINISHED WITH INPUT.

cooo

C002

C004

C006

C008

C00B

C00D

C00F

C012

C014

C016

C018

C01A

C01C

C01E

C020

C022

C024

A9

85

A9

85

20

F0

85

20

A5

A0

91

C9

F0

E6

DO

E6

DO

60

40

FC

00

FB

E4 FF

FB

02

D2 FF

02

00

FB

85

08

FB

E8

FC

E4

Additional programming examples will be provided at the end of the

chapter.
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V The Indexed Indirect Addressing Mode

This addressing mode is used so seldom that we will confine ourselves to

a very brief description. The indexed indirect addressing mode is symbolized

by the notation "(IND,X)." Only the number in the X register is used as an
index.

Like the (IND),Y addressing mode described above, the (IND,X) address

ing mode is a two-byte instruction. Symbolize the second byte of the instruc

tion by IAL. Then the ADL of the operand is found in the zero-page location

whose address is the sum of IAL and X. The ADH of the operand is found

in the next location, that is, at IAL + X + 1. In symbols:

ADL = (IAL + X)

ADH = (IAL + X + 1)

operand = (ADH:ADL)

The (IND,X) addressing mode is sometimes called "pre-indexed indirect'7

addressing. It is indirect because the instruction has no direct information about

the address of the operand. The instruction informs the processor where this

address is to be found. It is "pre-indexed7' because the location of the address

of the operand must be added to IAL before the page-zero location contain

ing the address of the operand can be identified.

In contrast, the indirect indexed addressing mode discussed in the previous

section is sometimes called "post-indexed indirect77 addressing. Again, it is

indirect because the instruction informs the processor where the address of the

operand is to be found, rather than giving it the address directly. It is "post-

indexed77 because Y is added to the address stored in page zero after this ad

dress has been located.

The rarity with which the (IND,X) addressing mode is used precludes the

necessity for any additional discussion. In virtually all programming situa

tions, the (IND),Y addressing mode will accomplish the same objective as the

(IND,X) addressing mode, but with fewer program bytes. The (IND,X) ad

dressing mode simply wastes too much of page zero of memory to be a viable

addressing mode.

VI. Additional Programming Examples

We will provide a few additional programming examples that use the ad

dressing modes discussed in this chapter. You should be aware that many

programming examples can be found in the extensive literature and software

associated with the 6502 microprocessor, and this literature is also relevant

to the 6510 microprocessor. Valuable references in this connection are 6502

Assembly Language Subroutines by Lance A. Leventhal and Winthrop Saville

(Osborne/McGraw-Hill, 1982), 6502 Assembly Language Programmingby Lance

A. Leventhal (Osborne/McGraw-Hill, 1979), and 6502 Software Design by Leo

J. Scanlon (Howard W. Sams & Co., Inc., 1980). The subject matter in these
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references is not intended for the beginning programmer, but once you have

mastered the fundamentals of assembly-language programmingyou will want

some of these books in your programming library.

A 1,000-byte section of memory, known as color memory, is used by the

VIC chip to determine the colors of the characters on the screen. The section

of memory starts at $D800. A color number from $0 to $F placed in these loca

tions determines the color of the character on the screen. See your Program

mer's Reference Guide for details. The program in Example 8-12 sets all of the

color locations to the color number in location $0002. Notice the similarity be

tween it and the program in Example 8-4. Both use the ABS,X addressing

mode. In a moment we will use both of these programs in a low-resolution

graphics application.

Example 8-12. A Routine to Fill Color Memory

Object: Place the color number found in location $0002 in each location in

the color memory for the VIC chip.

10 SETCLR

11

12 LOOP

13

14

15

16 ■

17

18 .

LDA

LDX

DEX

STA

STA

STA

STA

BNE

RTS

+COLOR

#250

CLR,X

CLR+2 50

CLR+500

CLR+750

LOOP

,x

,x

,x

;GET COLOR CODE

;START X AT 250.

;NEXT X, STEP -1

;ADH:ADL = CLR +

;ADH:ADL = CLR +

;ADH:ADL = CLR +

;ADH:ADL = CLR +

;IF XO0 THEN GO

FROM I

X.

250 ■

500 ■

750 ■

?0002.

*■ X.

^ X.

«■ X.

TO LOOP.

C414

C416

C418

C419

. C41C

C41F

C422

C425

C427

A5

A2

CA

9D

9D

9D

9D

DO

60

02

FA

00

FA

F4

EE

Fl

D8

D8

D9

DA

The next example illustrates the (IND),Y addressing mode. This program

will take an x-coordinate between 0 and 39 and a y-coordinate between 0 and

24 and place a character on the screen of the video monitor at the (x,y) coor

dinate. Refer to page 63 of your Commodore 64 User's Guide that came with your

computer. The address corresponding to any (x,y) position on the 40-by-25

screen is given by the formula

ADDR = 1024 + x 4- 40*y

where x is the column number and y is the row number. Given (x,y), we

would like to be able to place a character at that position. Let us put the equa

tion in another form and use hexadecimal numbers:

ADDR = ($0400 + $28*y) +x

This is vaguely familiar to the form of the indirect indexed addressing mode.

The number in parentheses is a BAH:BAL to be calculated. The number x

becomes the number in the Y register. Then the instruction

STA (IAL),Y

will store the character code in the accumulator at the position (x,y) if zero-

page locations IAL and IAL + 1 contain BAL and BAH, respectively, where

BAH:BAL = $0400 + $28*y
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In other words, we can use the STA (IAL),Y instruction to reference any posi

tion on the screen identified by the (x,y) coordinate pair if we transfer x into

the Y register and calculate the base address high (BAH) and the base address

low (BAL) from the expression

$0400 + $28*y

and store this 16-bit number in zero-page location IAL and IAL + 1.

An identical technique will be usedwhenwe write our bit-mapped graphics

routines, so you should make a serious attempt to understand this technique

as it applies to low-resolution screen graphics.

The first 32 lines of the program in Example 8-13 are required to change the

x- and y-coordinates into the address information. The program assumes that

x is stored in XPOS and y is stored in YPOS. Line 12 places the x-coordinate

in the Y register. That is the simple part. We could write a multiplication

routine to find $28*y, but it is simpler to make use of the fact that $28 (40) is

$5*$8. Thus, multiplication by $28 is equivalent to successive multiplications

by five and eight.

To multiply by five, we first multiply by four by shifting the number two

bits to the left. Adding this to the original numbergives a number five times

the original number. This is accomplished on lines 14 through 23 in Exam

ple 8-13. Notice that the LSB of the answer is placed in IAL and the MSB of

the answer is placed in IAL + 1.

Recall that multiplicationby eight can be accomplished with three shifts left.

Lines 24 through 29 accomplish this. Finally, this result is added to $0400 and

the answer, BAH:BAL, is placed in IAL and IAL + 1.

This may seem like an immense amount of work to set up the base address

for the STA (IAL),Y addressing mode, but it is the only way it can be done.

In any case, the heart of the program in Example 8-13, and the part of the pro

gram that is most pertinent to this chapter, is line 35. On line 34, the code of

the character we wish to plot is fetched from the memory location called

CODE; on line 35, the STA (IAL),Y instruction is used to place it at the (x,y)

coordinate on the screen of the video monitor.

Example 8-13. A Program to Place a Character at the

Coordinate (x,y) on the Screen

Object: Place a character code at the location

ADDR = $0400 + $28*y + x

in memory. (x,y) are the coordinates of a point on the screen.

;CLEAR LOCATION FOR BASE C430 A9 00

;ADDRESS LOW (BAL). C432 85 FC

?Y REGISTER HOLDS X COORDINATE. C434 A4 FD

;GET Y COORDINATE INTO A. C436 A5 FF

;MULTIPLY Y COORDINATE BY FOUR C438 0A

;WITH TWO SHIFTS LEFT AND C439 26 FC

;TWO ROTATES LEFT. C43B 0A

C43C 26 FC

10 ADHADL

11

12

13

14

15

16

17

LDA

STA

LDY

LDA

ASL

ROL

ASL

ROL

#0

+IAL+1

+XPOS

+YPOS

A

+IAL+1

A

+IAL+1



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34 PLOT

35

36

37

CLC

ADC +YPOS

STA +IAL

LDA #0

ADC +IAL+1

STA +-IAL+1

ASL +IAL

ROL +IAL+1

ASL +IAL

ROL +IAL+1

ASL +IAL

ROL +IAL+1

LDA #04

ADC +IAL+1

STA +IAL+1

LDA +CODE

STA (IAL),Y

RTS

VI. Additional Programming Examples

;NEXT ADD THE Y COORDINATE TO THE

;PREVIOUS RESULT TO OBTAIN

;A MULTIPLICATION BY FIVE.

;MULTIPLICATION BY 5 IS COMPLETE.

;NOW MULTIPLY BY 8 WITH

;THREE SHIFTS LEFT AND

;THREE ROTATES LEFT.

;5*8 =40. WE HAVE MULTIPLIED

;THE Y COORDINATE BY 40.

;ADD $04 TO ADH TO GET BASE ADDRESS

;OF SCREEN MEMORY.

;GET SCREEN CODk TO PLOT.
;PLOT IT AT (X-COORD., Y-COORD.)

749

C43E

C43F

C441

C443

C445

C447

C449

C44B

C44D

C44F

C451

C453

C455

C457

C459

C45B

C45D

C45F

18

65

85

A9

65

85

06

26

06

26

06

26

A9

65

85

A5

91

60

FF

FB

00

FC

FC

FB

FC

FB

FC

FB

FC

04

FC

FC

02

FB

Example 8-14 will test the programs in Examples 8-13,8-12, and 8-4. It sets

up various colors, clears the screen by calling Example 8-4, sets up color

memoryby calling Example 8-12, and thenbounces a ball back andforth across

the top of the screen with successive calls to the plotting routine in Example

8-13. The comments should explain most of the details. A delay routine slows

down the ball so that you can observe it. Load the programs in the examples

just mentioned and execute the program in Example 8-14. You should observe

a ball bouncing back and forth. Try various delays.

Example 8-14. A Program to Test Examples 8-4,8-12,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

TEST

test'

RIGHT

LEFT

PLTBAL

EQU $C460

LDA #14

STA BKGCLR

LDA #13

STA BRDCLR

JSR CLRSCN

JSR SETCLR

LDA #03

STA +XPOS

LDA #01

STA +YPOS

INC +XPOS

JSR PLTBAL

LDA +XPOS

CMP #39

BCC RIGHT

DEC +XPOS

JSR PLTBAL

LDA +XPOS

BEQ RIGHT

BNE LEFT

LDA #81

STA +CODE

JSR ADHADL

JSR DELAY

LDA #$20

STA +CODE

JSR ADHADL

RTS

;SET BACKGROUND COLOR TO LT BLUE.

;SET BORDER COLOR TO LT GREEN.

;CLEAR THE SCREEN.

;SET COLOR MEMORY.

;START BALL AT X = 3

;START BALL AT Y = 1

;MOVE BALL RIGHT.

;OUTPUT THE BALL TO THE SCREEN.

;FETCH THE X COORDINATE.

;XPOS - 39=>0? YES, C=l. NO, C=0.

;IF C= 0, MOVE RIGHT.

;MOVE BALL LEFT.

;OUTPUT THE BALL TO THE SCREEN.

;FETCH THE X COORDINATE.

;IF XPOS = 0, MOVE RIGHT.

;OTHERWISE MOVE LEFT.

;81 IS CODE FOR BALL.

;OUTPUT BALL TO THE SCREEN.

;DISPLAY IT FOR A MOMENT.

;$20 IS CODE FOR SPACE.

;CLEAR THE BALL FROM THE SCREEN.

;OUTPUT SPACE.

and 8-13

C460

C462

C465

C467

C46A

C46D

C470

C472

C474

C476

C478

C47A

C47D

C47F

C481

C483

C485

C488

C48A

C48C

C48E

C490

C492

C495

C498

C49A

C49C

C49F

A9

8D

A9

8D

20

20

A9

85

A9

85

E6

20

A5

C9

90

C6

20

A5

F0

DO

A9

85

20

20

A9

85

20

60

0E

21

0D

20

00

14

03

FD

01

FF

FD

8E

FD

27

F5

FD

8E

FD

EC

F5

51

02

30

A0

20

02

30

DO

DO

C4

C4

C4

C4

C4

C4

C4
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41 DELAY LDX #$20 ;DELAY LOOP. . C4A0 A2 20

42 LDY #$FF C4A2 A0 FF

43 BRANCH DEY C4A4 88

44 BNE BRANCH C4A5 DO FD

45 DEX C4A7 CA

46 BNE BRANCH C4A8 DO FA

47 RTS C4AA 60

VII. Summary

The indexed addressing modes have these designations: ABS,X; ABS,Y;

Z-PAGE,X; Z-PAGE,Y; (IND),Y; and (IND,X). In each indexed addressing

mode, the number in either the X or Y register is involved. That is why these

registers are called index registers.

In the case of the absolute indexed addressing modes, the number in the

index register is added to the address formed by the second and third bytes

of the instruction to give the address of the operand.

In the case of the zero-page indexed addressing modes, the number in the

index register is added to the second byte of the instruction to give the zero-

page address of the operand.

In the case of the indirect indexed addressing mode, the number in the Y

index register is added to an address stored in two locations, IAL and IAL

+ 1, in page zero of memory. The sum so obtained is the address of the

operand. IAL is the second byte of the instruction.

In the case of the indexed indirect addressing mode, the address of the

operand is stored in a page-zero location whose address is the sum of the se

cond byte of the instruction and the number in the X index register.

An instruction using either the absolute or zero-page indexed addressing

modes can reference up to one page of data. The indirect indexed addressing

mode is used when the data occupies several pages of memory. The indexed

indirect addressing mode is rarely used. Graphics and sound-generation pro

grams make extensive use of these addressing modes.

VIII. Exercises

1. Where will the

LDA$C123,Y

instruction find its operand if the number in the Y register is $7F?

2. Where will the

ADCZADDR,X

instruction find its operand if ZADDR is the zero page address $57 and X is
$30?

3. Where will the

0RA(IAL),Y

instruction find its operand if the page-zero location IAL contains $2F, IAL

+ 1 contains $D0, and Y contains the number $23?
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4. Write an assembly-language program that performs the same function as this

BASIC sprite-making program:

10 ADDR = 832

20 FOR I = 0 TO 62

30 POKE (ADDR + I),0

40 NEXT

5. Write a program to store zeros in all of the locations from $3000 to $30FF, page

$30 of memory.

6. Write a program to transfer the codes in page $30 of memory to page $2F of

memory.

7. Write a program similar to the one in Example 8-6 that outputs the word

"ACCUMULATOR" to the screen.

8. Write a program that complements Example 8-11 by printing on the screen

all of the characters input by the program in Example 8-11. Stop printingwhen

the character code $85 for the Fl key is reached.

9. Write a program that transfers the numbers in locations $D800 through $DFFF

to locations $2000 through $2800. Use the (IND),Y addressing mode.

10. Write a program that converts ASCII codes for the upper-case alphabetic

characters into screen display codes. Refer to Appendix E in the Programmer's

Reference Guide. Use the ABS,X addressing mode. An ASCII code in the X

register should reference a location in memory that contains the screen code.

Locate the screen codes in page $C1 of memory. Devise a way to test your

program.





Jumps, Subroutine Calls,

And Interrupts

I. Introduction

The 6510 register featured in this chapter is the program counter, or PC.

The stack pointer, S, will play a supporting role. The program counter is fre

quently considered to be made up of a low byte, called PCL for program

counter low, and a high byte, calledPCH for program counter high. The stack

pointer is an 8-bit register. Sometimes it, too, is considered a 16-bit register,

with the most-significant byte being $01.

A machine-language program is an ordered set of instructions stored in

memory. It is the program counter that makes the execution of a machine-

language program an orderly process. Specifically, the program counter con

tains the 16-bit address of the location in memorywhere the nextbyte of the

program is found. The 6510 automatically increments the number in the pro

gram counter each time it fetches a new byte of the program it is executing.

If you could watch it, the program counter would appear to count as one byte

of the program after another is fetched from memory.

The program counter increments in a systematic fashion at a rate of about

one count every microsecond, unless it executes a branch instruction, jump

instruction, or a subroutine call, or unless the program is interrupted. In any

of these cases, the program counter will appear to jump forward or backward

by more than one count. We have already described the branch instructions

in Chapter 6, and we have made frequent use of subroutines.

In this chapter, we will examine subroutine calls and returns in greater depth

than before. We will also introduce several new instructions that modify the

program counter. These instructions include the JMP, JSR, RTS, BRK, and

RTI instructions. Their op codes are listed in Table 9-1.

The stack is a special memory area located in page one, namely, locations

with addresses $0100 through $01FF. The stack pointer contains the least-

significant byte of a page one address. The area ofmemoryknown as the stack

153
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Table 9-1. Op codes for instructions

Instruction

JMP

JSR

RTS

RTI

BRK

CLI

SEI

Description

Unconditional jump

Jump to subroutine

Return from subroutine

Return from interrupt

Software interrupt

0—I. Enable interrupts

1—I. Disable interrupts

that modify the program counter.

Op Codes for Each Addressing Mode

Absolute

$4C

20

Implied Indirect

$6C

$60

40

00

58

78

is used in conjunction with the execution of subroutines and interrupt

routines. Associated with it are a group of instructions described as stack opera

tion instructions. These include the PHA, PLA, PHP, PLP, TSX, and TXS in

structions. Their op codes are listed in Table 9-2.

Table 9-2. Op codes for the stack operation instructions.

Implied Addressing Mode

Instruction Description Op Code

PHA'

PHP

PLA

PLP

TSX

TXS

Push A on the stack;

decrement stack pointer

Push P on the stack;

decrement stack sointer

Increment stack pointer;

pull A from the stack

Increment stack Pointer;

pull P from the stack

Transfer S to X

Transfer X to S

$48

08

68

28

8A

9A

The final topic of this chapter will be interrupts. It is possible for signals to

be applied to the pins of the 6510 that will cause it to quit executing one pro

gram and make it start executing another. In this case, the first program was

interrupted. We will take a detailed look at the techniques and the applications

of interrupt processing. Two instructions that have not yet been mentioned

above will be required to deal with interrupts. They are the CLI and SEI in

structions listed in Table 9-1.

With this outline of what new topics we intend to pursue in this chapter,

let us begin with a discussion of the JMP instruction.
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II. The JMP Instruction

The jump instruction, JMP, is analogous to the BASIC GOTO instruction.

The operand of the GOTO instruction is the line number of the next BASIC

instruction to be executed. The operand of the JMP instruction is the address

of the next instruction to be executed. At least this is the case when it uses

the absolute addressing mode. Later we will describe its indirect addressing

mode.

First consider the absolute addressing mode of the JMP instruction. The first

byte is the op code. The second and third bytes are the new values for the

program counter. In particular, the second byte of the JMP instruction

becomes the new PCL and the third byte becomes the new PCH. After the

JMP instruction is executed, the program continues with the op code stored

in the location whose address is identical to the number in the program

counter.

The assembly-language form of the JMP instruction in its absolute address

ing mode is

JMP SOMWHR

where SOMWHR is the label of a location in memory where execution will

continue after execution of the JMP instruction. Suppose SOMWHR is a label

for the address $CDEF. Then the assembled form of the JMP SOMWHR in

struction is

JMP SOMWHR 4C EF CD

The next instruction to be executed begins at the location whose address is

$CDEF.

The program in Example 9-1 illustrates a JMP instruction in its absolute ad

dressing mode. This is a simple program that gets a character from the

keyboard using a Commoddre 64 operating system subroutine, GETIN. Any

non-zero character code is then sent to the operating system subroutine

CHROUT to output the character to the screen. Finally, the JMP SOMWHR

instruction on line 13 puts the program in an infinite loop to repeat the process.

Example 9-1. Illustrating the JMP Instruction in its

Absolute Addressing Mode

Object: Use a JMP instruction to put the input and output subroutines in

an infinite loop.
cooo

10 SOMWHR JSR GETIN ;CALL SUBROUTINE GETIN. COOO 20 E4 FF

11 . BEQ SOMWHR ;A = 0 IF NO KEY IS PRESSED. C003 F0 FB

12 JSR CHROUT ;CALL SUBROUTINE CHROUT. C005 20 D2 FF

13 JMP SOMWHR ;GO TO ADDRESS LABELED SOMWHR. C008 4C 00 CO

Recall that the branch instructions permit the program counter to be

modified by no more than +127 and no less than -128. The JMP instruction
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is frequently used to branch outside of the -128 to +127 range, although

sometimes a series ofbranch instructions will affect such a branch. It is good

programming practice to use the JMP instruction as seldom as possible.

Aprogram that containsJMPinstructions cannotbe relocated without modi

fying the JMP instructions. For example, if $C000 is an undesirable starting

location for the program in Example 9-1, then it must be moved. Suppose it

is moved to $CF00. Then the JMP instruction must be modified to reflect this

change. Specifically, the assembled version of the JMP SOMWHR instruc

tion would become

JMP SOMWHERE 4C 00 CF

A program that will execute anywhere in memory without modification is said

to be relocatable. Programs with no JMP or JSR instructions are always

relocatable.

The operating system of the Commodore 64 provides another example of

the use of the JMP instruction. This operating system contains a jump table,

part of which is reproduced in Table 9-3. We digress for a moment to describe

how Table 9-3 was obtained.

To obtain Table 9-3, we disassembled the part of the Commodore 64

operating system between $FFB1 and $FFF3. Many assemblers will have

the capability to disassemble a program from memory. A program is

disassembled if the binary instructions in memory are converted to

assembly-language mnemonics and hexadecimal (or decimal) operands.

It is very useful to be able to disassemble programs for which you have

no assembly-language listings.

The Commodore 64 operating system uses a jump table to access im

portant and useful subroutines in the operating system. If a new version

of the operating system is designed with these subroutines in different loca

tions than an older version, the jump table is modified to reflect the new

location of the subroutine.

For example, subroutine RDTIM reads the real time dock. It is currently

located inROM at $F6DD: refer to the eighth line from the bottom of Table

9-3. This line shows that at location $FFDE in the jump table, we have a

JMP $F6DD instruction. This is a jump to the starting address of RDTIM.

To access subroutine RDTIM, we would use a JSR $FFDE instruction.

Location $FFDE is not really the starting address of the subroutine;

rather, it is a location in the jump table. This means we would not go

directly to the subroutine. We would go to the subroutine by way of the

jump table. If subroutine RDTIM is moved in a later ROM version of the

Commodore 64 operating system, the jump table will be modified to reflect

this change. Thus, the address $F6DD might be changed, but the loca

tion of the JMP RDTIM instruction, $FFDE in the jump table, would not

change. Location $FFDE will always contain a JMP RDTIM instruction,

regardless of where RDTIM is located. This design prevents obsolescence

of programs that have been designed around operating system

subroutines. The alternative is to duplicate all of these subroutines in your

own programs, though this is both inefficient and expensive.
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Table 9-3. Commodore 64 operating system jump table.

EQU+$FFB1 FFB1

JMP+$ED0C FFB1 4C OC ED

JMP+$ED09 FFB4 4C 09 ED

JMP+$FE07 FFB7 4C 07 FE

JMP+$FE00 FFBA 4C 00 FE

JMP+$FDF9 PPBD.4C F9 FD

JMP+($031A) FFCO 6C 1A 03

JMP+($031C) FFC3 6C 1C 03

JMP+($031E) FFC6 6C IE 03

JMP+($0320) FFC9 6C 20 03

JMP+($0322) FFCC 6C 22 03

JMP+($0324) FFCF 6C 24 03

JMP+($0326) FFD2 6.C 26 03

JMP+$F49E FFD5 4C 9E F4

JMP+$F5DD FFD8 4C DD F5

JMP+$F6E4 FFDB 4C E4 F6

JMP+$F6DD FFDE 4C DD F6

JMP+($0328) FFE1 6C 28 03

JMP+($032A) FFE4 6C 2A 03

JMP+($032C) FFE7 6C 2C 03

JMP+$F69B FFEA 4C 9B F6

JMP+$E505 FFED 4C 05 E5

JMP+$E50A FFFO 4C 0A E5

JMP+$E500 FFF3 4C 00 E5

Refer once again to Table 9-3. Some of the JMP instructions have paren

theses in the operand field. These instructions are using the JMP instruction

in its indirect addressing mode. In this mode, the operand field does not contain

the new value for the program counter, PCL and PCH. Instead, it contains

the address at which the new value of PCL will be found. The new value of

PCH is found in the next location.

The assembly-language form of the JMP instruction in its indirect addressing

mode is

JMP (ADDR) .

where ADDR is a symbol for the address of the location that contains the new

PCL. The new PCH will be in location ADDR + 1.

Here is an example ofhow the indirect JMP instruction is used. Subroutine

CHROUT, the operating system that outputs a character, is accessedby a JSR

$FFD2. Examine the jump table listed in Table 9-3 and observe that $FFD2

is the starting address of the

JMP ($0326)
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instruction. Memory location $0326 is not where subroutine CHROUTbegins.

Location $0326 contains, in fact, the LSB of the starting address of subroutine

CHROUT. Location $0327 ($0326 + 1) contains the MSB of the starting ad

dress of CHROUT.

Thus, when the JMP ($0326) is executed, the microprocessor fetches the new

PCL from location $0326 and the new PCH from location $0327, and execu

tion continues with the op code located at the address found in the program

counter.

The numbers in the memory locations identified by the JMP instruction in

its indirect mode are frequently called jump vectors. Thus, the jump vector

for subroutine CHROUT is located at $0326 and $0327. A jump vector con

sists of two bytes, and it points to the location where execution will continue

after the JMP indirect instruction is executed.

Does this seem awkward? Why not just jump directly to the subroutine

instead of using an indirect jump? Consider the fact that there are several

output devices, the screen, the cassette tape recorder, the disk drive, the

printer, and so on. By changing the indirect jump vector, you can con

trol where the character code is going to be sent. Thus, if the printer is

currently the active output device you wish to use, the jump vector can

point to the part of the CHROUT subroutine that outputs a character to

the printer. If the screen is the output device, a different jump vector can

be placed in locations $0326 and $0327 to point to the part of the CHROUT

subroutine that prints characters on the screen. In each case, you call the

same subroutine at the same location, namely, $FFD2 in the jump table.

However, the program jumps to a different subroutine, depending on

which output device is currently active.

By changing the indirectjump vector, you can also vector the output to an

output routine that you have written. Notice that Table 9-3 contains a number

of indirect jumps. You may want to study your Programmer's Reference Guide,

pages 272 through 273, to see which routines are called with these jumps.

Example 9-2 illustrates the indirect jump instruction in a program. This

routine calls subroutine GETBYT twice to input two bytes that become the

MSB and the LSB of the indirect jump vector. Subroutine GETBYT is the

routine in Example 7-4. Once the indirect jump vector is in place, the program

goes to a subroutine that begins with the indirect jump instruction. This is

line 17 of Example 9-2. In other words, the program in Example 9-2 allows

you to go to any machine-language subroutine you have in memory, for ex

ample, a program you are testing. The routine to which youjump should end

in anRTS instruction, which will return control to the calling program in Ex

ample 9-2. Example 9-2 is the machine-language equivalent of the SYS xxxx

command in BASIC.

We will see another use of the indirect jump when we study interrupts

later in this chapter.We turn next to a discussion ofhow the JSR and RTS

instructions function.
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Example 9-2. A Program to "GO TO" Another

Machine-Language Program

Object: Input an indirect jump vector from the keyboard and execute the

routine identified by this vector.

11 GO JSR GETBYT ;INPUT THE MSB OF THE ADDRESS. C890 20 31 C8

12 STA +VECT+1 ;MAKE IT THE MSB OF THE JMP VECTOR. C893 85 FC

13 JSR GETBYT ;INPUT THE LSB OF THE ADDRESS. ' C895 20 31 C8
14 STA +VECT ;MAKE IT THE LSB OF THE JMP VECTOR. C898 85 FB

15 JSR JUMP ;CALL THE INDIRECT JUMP SUBROUTINE. C89A 20 9E C8

16 RTS C89D 60

17 JUMP JMP (VECT) ;EXECUTE THE ROUTINE. C89E 6C FB 00

III. Subroutine Calls arid Returns

In this book we have frequently called the programs routines. A routine is

simply a set of instructions that achieve a particular objective. If a program

uses the same routine several times, it will be advantageous to use it as a
subroutine. Otherwise, you must duplicate the routine at each point in the

program that it is used, a great waste of program memory and programming

effort.

The JSR and RTS instructions have been used many times in this book. For

purposes of review, the JSR instruction is a three-byte instruction. The first

byte is the op code. The second and third bytes are the LSB and the MSB of

the starting address of the subroutine. The JSR instruction works by placing

the second and third bytes of the instruction into the program counter. Thus,

the second byte of the JSR instruction becomes the new PCL and the third

byte of the instruction becomes the PCH. Execution of the subroutine begins

at the instruction whose address is PCH:PCL.

The RTS instruction is a single-byte instruction using the implied addressing

mode. When executed, it causes the program to return to the calling program

to execute the instruction immediately following the JSR instruction.

Re-examine Example 9-2. Subroutine GETBYT is located at $C831, so the

JSR GETBYT instruction on line 13 is assembled as follows:

JSR GETBYT C895 20 31 C8

where $C895 is the address of the op code of the JSR instruction. After execu

tion of the JSR GETBYT instruction, the program will continue at $C831, the

address at which subroutine GETBYTbegins. Subroutine GETBYT must end

with an RTS instruction. After this RTS instruction is executed, the program

in Example 9-2 will continue with the STA +VECT instruction immediately

following the JSR GETBYT instruction.

Nowyou should understandhow the JSR instruction works, butyou should

have some questions about the RTS instruction. Since the same subroutine

canbe called from many different places in a main program, how does itknow

where to return? Refer again to Example 9-2. Subroutine GETBYT is called
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twice from this program. The first time it is called, the program must return

to location $C893. The second time it is called, the program must return to

location $C898. The RTS instruction itself contains no information about the

return address.

The answer is that the JSR instruction not only modifies the program

counter, but it also causes the information about the return address to be

stored in a special place in memory. This special place is called the stack, and

it is confined to page one of memory, namely, locations $01FF through $0100.

We will examine how this is accomplished in more detail.

IV Operation of the Stack

The stack is page one of memory, and it must be R/W memory. The stack

is operated in conjunction with a register in the 6510 microprocessor known

as the stack pointer, S.

Study the description of the stack and the stack pointer in connection with

Figure 9-1. The stack pointer contains the LSB of a page-one address: the MSB

of this address is, of course, $01. In what follows, we will think of the stack

pointer as a 16-bit address whose MSB is understood to be $01. The stack pointer

identifies a memory location in page one that is available to store informa

tion. In Figure 9-1, we have arbitrarily assumed that the current value of the

stack pointer is $A3; consequently, it points to the memory location whose

address is $01A3. Each time information is stored there by the 6510, the stack

pointer is decremented after the write operation so that it points to the next

available location. This'is why the stack is sometimes called a push-down stack.
When information is read from the stack by the 6510, the stack pointer is in

cremented before the read operation to identify the correct location of the data.

Thus, the first eight-bit code pushed on the stack is the last eight-bit code

to be pulled from the stack. This is why the stack is called a first-in, last-out

(FILO) memory.

Now let us examine what happens when a jump-to-subroutine (JSR) in

struction is executed. Assume the stack pointer is $A3, as indicated in Figure

9-1, and assume we are dealing with the JSR GETBYT on line 11 of Example

9-2. This JSR GETBYT instruction is stored in locations $C890 through $C892.

In particular, the last byte of the JSR GETBYT instruction is located at $C892.

Before the JSR GETBYT instruction changes the program counter to $C831,

the address of the subroutine GETBYT, the 6510 microprocessor stores the

number $C8 on the stack at location $01A3 and decrements the stack pointer

to $A2. It then stores the number $92 on the stack at location $01A2 and
decrements the stack pointer to $A1.

When the RTS instruction in GETBYT is executed, the 6510 first in

crements the stack pointer to $A2, reads the number $92, and stores it in

the PCL. The stack pointer is incremented to $A3, then the 6510 reads the
number $C8 stored in location $O1A3 and stores it in the PCH. Finally, the
program counter is incremented, and the next byte of the program is fetched

from location $C892 + 1 = $C893.
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THE STACKADDRESS

$01FF

$01

STACK POINTER

$A3

-S

$01A3

$0100

I

Figure 9-1. Diagram of the stack. The stack is page one of memory. The stack

pointer S is a 6510 register that identifies one of the 256 memory locations

on the stack. The number in S identifies the least-significant byte of a page-

one memory location.

Thus, it is the address of the third byte of the JSR instruction that is stored

on the stack as return address information. You probably expected that the

6510 would store the address of the next op code following the JSR instruc

tion. But because the program counter is incremented after each programbyte

is fetched, the proper address to store is the one that identifies the location

of the third byte of the JSR instruction.
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What is the value of the stack pointer after a JSR and an RTS instruction?

It has exactly the same value it had before the subroutine call. You will see

that all stack operations must occur in pairs. For example, every JSR requires an

RTS. Calamitous consequences may occur when a programmer writes pro

grams that violate this principle.

We can now briefly summarize the JSR and RTS instructions:

• The JSR instruction pushes the address of its third byte on the stack in the order

ADH, ADL. The second and third bytes of the JSR go into the program counter

in the order PCL, PCH.

• The RTS instruction pulls two bytes from the top of the stack and places them

in the program counter in the order PCL, PCH. The program counter is

incremented.

We conclude this sectionby addressing several minor concerns. What hap

pens in the case of nested subroutines, that is, when one subroutine calls

another? The stack pointer will be decremented twice when the first JSR is

executed. AnotherJSR instruction is encountered before anRTS instruction,

and the stack pointer is decremented twice more. The stack is nowfour deep

and there are two return addresses (four bytes) on the stack. Next, the first

RTS instruction is executed, and the second return address on the stack is the

first return address off the stack. The stack is now only two deep. Finally, the

second RTS instruction is executed, and the stack returns to its original

condition.

It should be clear that two bytes of stack memory are required for each

subroutine. If the subroutines are nested six deep, at least 12 bytes of stack

storage are required.

What happens when the stack pointer decrements to $00, identifying the

stack location $0100? The next time the stack pointer is decremented it becomes

$FF, pointing to the location $01FF. In other words, nothing significant hap

pens when the stack pointer decrements through zero.

In the unlikely case, however, that you nest your subroutines more than

128 deep, requiring,more than 256 bytes of stack storage, then you are in

serious trouble. The last subroutine call wipes out the first return address,

and your program will surely crash. In short, the number of stack locations

required by your programs must not exceed 256, the number of memory loca

tions in page one; otherwise, expect disaster.

V. Stack Operation Instructions

The stack maybe used for other purposes besides storing return addresses

for subroutine calls. Two instructions, PHA and PHP, are used to store in

formation on the stack, while two other instructions, PLA and PLP, are used

to recall information from the stack. We define each of these instructions

below. The notation "Ms" symbolizes a memory location M on the stack that

is identified by the stack pointer S. *
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• PHA—Push the code in the accumulator on the stack. Decrement the stack

pointer.

Symbolically: A - Ms. S = S - 1.

• PHP—Push the code in the processor status register on the stack. Decrement

the stack pointer.

Symbolically: P - Ms. S = S - 1.

• PLA—Increment the stack pointer and pull the number from the stack and place

it in the accumulator.

Symbolically: S = S + 1. Ms - A.

• PLP—Increment the stack pointer and pull the number from the stack and place

it in the P register.

Symbolically: S = S + 1. Ms - P.

The PHA and PLA instructions are illustrated in Figures 9-2 and 9-3, respec

tively. A diagram of the PHP and PLP instructions would be identical to

Figures 9-2 and 9-3, respectively, if the 6510 status register were to replace

the accumulator. Notice that the stack pointer is decremented after a push

(PHA, PHP) operation. The stack pointer is incremented before a pull (PLA,

PLP) operation.

Use of the PHA and PLA instructions in a program is illustrated in Exam

ple 9-3. This program is identical in function to the PRBYTE routine in Example

7-3, and you should compare it with the latter example. Notice that instead

of using precious zero-page memory storage, we use the stack. Compare lines

10 and 28 of Example 7-3 with lines 10 and 28 of Example 9-3. Instead of using

the location TEMP to save the number in the accumulator, in Example 9-3 we

have chosen to use the stack. The stack is generally used to save the code in

a register during a subroutine call.

Example 9-3. Illustration of the PHA and PLA Instructions

Object: Output a byte of data in the accumulator as two hexadecimal digits.

Return with the accumulator contents preserved.

10 PRBYTE

11

12

13

14

15

16

17

18

19 ;

20

21

22

23

24

25

26

27

28

29

PHA

PHA

LSR A

LSR A

LSR A

LSR A

JSR HEXCII

JSR CHROUT

PLA

AND #$0F

JSR HEXCII

JSR CHROUT

LDA #$20

JSR CHROUT

PLA

RTS

;PUSH A ON STACK. S=S-1.

;SAVE 2ND COPY OF A ON STACK. S = S-1

;SHIFT THE NUMBER IN THE

ACCUMULATOR FOUR BITS TO THE RIGHT.

;MOST SIGNIFICANT NIBBLE IS ZERO.

;NUMBER IS NOW IN LOW NIBBLE.

;CONVERT NUMBER TO ASCII.

;OUTPUT ITS CODE TO THE SCREEN.

;S=S+1. PULL 2ND COPY FROM STACK.

;MASK MOST SIGNIFICANT NIBBLE.

;CONVERT SECOND DIGIT TO ASCII.

;OUTPUT ITS CODE.

;OUTPUT ASCII SPACE BY SENDING

;SPACE CODE TO OUTPUT ROUTINE.

;S=S+1. PULL A FROM THE STACK.

C813 48

C814 48

C815 4A

C816 4A

C817 4A

C818 4A

C819 20 00 C8

C81C 20 D2 FF

C81F 68

C820 29 OF

C822 20 00 C8

C825 20 D2 FF

C828 A9 20

C82A 20 D2 FF

C82D 68

C82E 60



164 9DJumps, (Subroutine Calls, And Interrupts

ACCUMULATOR

PAGE ONE

ADDRESS

(LSB)

$FF

S 1 *

$00

MEMORY

(PAGE ONE)

Figure 9-2. Diagram of the PHA instruction. S is the number in the stack pointer

before the PHA instruction is executed. S - 1 is the number in the stack

pointer after the PHA instruction is executed.

It is also convenient to use the stack for temporary storage of a code, Refer

to lines 11 and 20 in Example 9-3. On line 11, the code in the accumulator is

saved on the stack because we will need this code again for the instructions

on lines 21 through 23.

How many stack storage locations does the subroutine in Example 9-3 re

quire? Two locations are required for the JSR instruction that calls the

subroutine. The routine also requires one stack location for each of the two
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ACCUMULATOR

PAGE ONE

ADDRESS

(LSB)

$FF

S + 1

S

$00

MEMORY

(PAGE ONE)

Figure 9-3. Diagram of the PLA instruction. S is the number in the stack pointer

before the PLA instruction is executed. S + 1 is the number in the stack

pointer after the PLA instruction is executed.

PHA instructions, giving a total of four stack locations. Notice that for each

PHA there is a PLA; in other words, the stack operations must occur in

pairs. Try running a program for which this is not true and observe what

happens.

A programmer must be very careful that the memory locations sacred to

a program are not modified by some inconspicuous subroutine. It is good prac

tice to make a list of memory assignments for each program and subroutine,

to make sure there are no conflicts. Of course, in certain cases it is desirable

for both the main program and a subroutine to make use of the same memory

locations. In fact, that is one of the simplest ways to pass information from

the main program to the subroutine and back again.
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Another problem arises when both the main program and one of its

subroutines need to use the same 6510 registers. For example, the operating

system subroutine SCNKEY modifies the A, X, Y, and P registers. Example

9-4 indicates how these registers maybe restored, intact, after the subroutine.

Line 10 saves the P register. Line 11 saves the accumulator, A. Lines 12 and

13 save the X register, and lines 14 and 15 save the Y register.

Refer, next, to lines 19 through 24. These six lines restore the registers to

their values before subroutine SCNKEY was called. Observe that the order

in which the registers are restored is the reverse ofthe order in which they were

saved. Also observe that the stack operations occur in pairs. A subroutine that

preserves the value of certain registers is said to be transparent to those

registers.

Example 9-4. Saving and Restoring Registers

Object: Call subroutine SCNKEY without modifying the 6510 registers.

10

11

12

13

14

15
1 £Id

17

18

19

20

21

22

23

24

25

SAVE PHP

PHA

TXA

PHA

TYA

PHA

JSR SCNKEY

;

RESTORE PLA

TAY

PLA

TAX

PLA

PLP

RTS

;PUSH P ON STACK. S=S-1.

;PUSH A ON STACK. S=S-1.

;TRANSFER X TO A.

;PUSH A (X) ON STACK. S=S-1.

;TRANSFER Y TO A.

;PUSH A (Y) ON STACK. S=S-1.

;JUMP TO SUBROUTINE SCNKEY.

;S=S+1. PULL A (Y) FROM STACK.

;TRANSFER A TO Y.

;S=S+1. PULL A (X) FROM STACK.

/•TRANSFER A TO X.

;S=S+1 ;PULL A FROM THE STACK.

;S=S+1. PULL P FROM THE STACK.

/•RETURN WITH ALL REGISTERS INTACT.

C000 08

C001 48

C002 8A

C003 48

C004 98

C005 48

C006 20 87

C009 68

C00A A8

C00B 68

C00C AA

C00D 68

C00E 28

C00F.60

EA

By now you can see that the stack and the stack pointer are similar to an

elevator in an office building. On the way down, the elevator unloads one

item on each floor; on the way up, it picks up the same item.

Two other stack operation instructions need to be mentioned, although they

are used infrequently. The TSX instruction transfers the number in the stack

pointer to the X register. The TXS instruction transfers the number in the X

register to the stack pointer. It is possible to locate and read various codes on

the stack with these instructions. Their use will be illustrated whenwe discuss

interrupts, the next topic of this chapter.

VI. IRQ-Type Interrupts*

In addition to being able to execute a routine from any point in a program

by jumping to the routine with a JSR instruction, it is also possible to inter

rupt the execution of a program to run another program segment called an

interrupt routine. To do this requires some events that occur in the hardware
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of the Commodore 64. In brief, a certain signal on one of the 40 pins of the

6510 will cause it to jump out of the program it is executing, execute a pro

gram segment called an interrupt routine, and then return to continue run

ning the program that was interrupted.

There are two kinds of interrupts that the 6510 is designed to handle, and

associated with each is a corresponding pin on the microprocessor. One kind

of interrupt we will call an IRQ-type interrupt, and the other we we will call

an NMI-type interrupt. These are related to the pins on the 6510

microprocessor that are designated IRQ and NMI, respectively. The letters

"IRQ" stand for interrupt request, while the letters "NMI" stand for non

maskable interrupt. The Commodore 64 operating system uses an interrupt

scheme to input information from its keyboard. We will begin by describing

the IRQ-type interrupt.

An IRQ-type interrupt is requested when the voltage on the IRQ pin on the

6510 microprocessor changes from five volts to zero volts and stays at zero

for at least six clock cycles. Figure 9-4 describes the signal on the IRQ pin that

is used to request an interrupt. The duration of the interrupt request signal

should not exceed the time it takes to execute the interrupt routine. The in

terrupt request will be recognized only if the I flag in the processor status register

is clear. The I flag is bit two in the processor status register. If the I flag is set,

the interrupt request will be ignored.

FIVE VOLTS

ZERO VOLTS

Figure 9-4. The interrupt request (IRQ) signal. The duration T of the zero-voltage

condition should be at least six clock cycles but not longer than the time it

takes to process the interrupt routine.

Refer to Table 9-1 and observe that a CLI instruction will clear the I flag,

allowing the recognition of interrupt request signals on the IRQ pin. An SEI

instruction will set the I flag, preventing the recognition of interrupt request

signals. In a moment we will illustrate these instructions.

These are the events that follow the recognition of an IRQ signal:

• The instruction currently being executed is completed. (At this point, the 16-bit

number in the program counter identifies the address of the next instruction

in the program.)

• The high-order byte of the program counter, PCH, is pushed on the stack and

the stack pointer, S, is decremented.



168 9DJumps, Subroutine Calls, And Interrupts

• The low-order byte of the program counter, PCL, is pushed on the stack and

the stack pointer is decremented.

• The code in the P register is pushed on the stack and the stack pointer is

decremented.

• The I flag in the P register is set to disable further interrupts.

• The 6510 replaces the number in its PCL with the number in $FFFE.

• The 6510 replaces the number in its PCH with the number in $FFFF.

• Execution continues with the op code whose address was stored in locations

$FFFE (LSB) and $FFFF (MSB).

The number stored in locations $FFFE and $FFFF is called the IRQ vector.

The IRQ vector is the address of the first op code in the series of instructions

called the IRQ routine. In short, when an interrupt request is recognized, the

program is interrupted, and execution continues at the location pointed to

by the interrupt vector.

The last instruction in the interrupt routine must be an RT1 instruction. Ex

ecution of the RTI instruction means:

• The stack pointer is incremented and the code found in this stack location is

placed in the P register, restoring it to the value it had before the program was

interrupted. (This ensures that the I flag will be cleared after the interrupt

routine is processed.)

• The stack pointer is incremented and the number found in this stack location

is placed in the PCL.

• The stack pointer is incremented and the number found in this stack location

is placed in the PCH.

• Execution continues with the op code found in the location whose address is

PCH.PCL. This will be the address of the first instruction following the instruc

tion that was interrupted.

Let us reinforce these concepts with some simple examples. Suppose the

program sequence being executed is

LDA NUM1 $CDEF AD 00 03

BEQ PAST $CDF2 F0 3F

and the interrupt occurs during the LDANUM1 instruction. Assume that the

I flag is clear when the interrupt occurs. Suppose that the stack pointer is $A3

before the interrupt occurs, and suppose the interrupt routine is located at

$1234. What happens when the interrupt signal occurs and how will the stack

be used in this case?

The LDANUM1 instruction will be completed, that is, the number stored

$0300 will be loaded into the accumulator. The MSB, $CD, of the program

counter is stored on the stack at location $01A3, and the LSB, $F2, of the pro

gram counter is stored at location $01A2. The stack pointer is decremented

again and the code in the P register is saved at location $01Al on the stack.

After this, the stack pointer is $A0. Notice that the address stored on the stack

identifies the BEQ PAST instruction.

Continuing with this same example, the I flag will be set, and the 6510 will

look in locations $FFFE and $FFFF to find where the interrupt routine is

located. Since we are assuming that the interrupt routine begins at location
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$1234, the number $34 must be stored in location $FFFE and the number $12

must be stored in location $FFFF. The number $1234 is the interrupt vector.

The processor fetches the interrupt vector and executes the interrupt routine.

When the RTI instruction in the interrupt routine is executed, the stack

pointer is incremented to $A1 and the code stored at location $O1A1 is placed

in the P register. Among other things, this clears the I flag. The stack pointer

is incremented to point to location $01A2 and the number, $F2, stored there

is placed in the PCL. The stack pointer is incremented for the last time, and

the number stored at location $01A3, $CD, is placed in the PCH. Execution

continues with the BEQ PAST instruction located at $CDF2.

Note that any P register flags that were modified by the LDANUM1 instruc

tion will have the same value they had after its execution, even though an

interrupt routine containing many instructions was executed between the

LDANUM1 instruction and the BEQ PAST instruction. The obvious reason

for this is that the P register was saved on the stack during execution of the

interrupt routine.

Before describing the interrupt handling routines that are unique to the

Commodore 64, we must introduce the BRK instruction. Execution of the BRK

instruction by the 6510 microprocessor causes it to execute the IRQ-type in

terrupt routine. In other words, you can produce an IRQ-type interrupt with

software. In this case the sequence of events described above will take place

without a signal on the IRQ pin of the 6510. In the case of a software-forced

interrupt, however, the B (break) flag in the processor status register will be

set before the P register is saved. The B flag will be cleared with the execution

of an RTI instruction. Also, a BRK instruction is not disabled when the I flag

is set.

One peculiarity is associated with the BRK instruction. On return from in

terrupt, the program counter will contain an address that is larger by two than

the address of the BRK instruction. Since the BRK instruction requires only

one byte, any op code that immediately follows it will be missed. Thus, the

location after the BRK instruction can contain anything. The first op code

following the BRK instruction should be two locations higher in memory.

Thus, if a break instruction is located at $CBA9, the next op code to be executed

after the interrupt routine must be located at $CBAB.

VII. The Commodore 64 Interrupt Structure*

To use interrupts on the Commodore 64, you must understand its inter

rupt handling routines. An explanation follows.

When you first apply power to the Commodore 64, it switches its operating

system into the memory locations at the top of memory. The operating system

is located in ROM, so the IRQ vector is in ROM. If you examine locations $FFFE

and $FFFF, you find the numbers $48 and $FF, respectively. Thus, the Com

modore 64 interrupt vector is $FF48, and the interrupt routine begins at $FF48.
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A disassembled portion of the program that begins at $FF48 is shown in

Table 9-4. Study this carefully. The first PHA instruction saves the number

in the accumulator during each interrupt. The next two instructions in Table

9-4 save the number in the X register on the stack. The two instructions that

follow save the number in the Y register.

Table 9-4. Disassembled form of part of the Commodore 64 IRQ-type

interrupt.

EQU+$FF48 FF48

PHA+ FF48 48

TXA+ FF49 8A

PHA+ FF4A 48

TYA+ FF4B 98

PHA+ FF4C 48

TSX+ FF4D BA

LDA+$0104,X FF4E BD 04 01

AND+#$10 FF51 29 10

BEQ+@+5 FF58 FF53 F0 03

JMP+($0316) FF55 6C 16 03

JMP+($0314) FF58 6C 14 03

Now comes a tricky move on the part of the programmer who wrote this

routine. The P register was the last item stored on the stack when the IRQ-

type interrupt occurred. Notice in Table 9-4 that the interrupt routine begins

with three stack-push operations and, of course, the stack pointer is

decremented after the third push. Thus, the code in the P register is stored

on the stackfour locations up from the location identified by the stack pointer.

After transferring the stack pointer to the X index register with the TSX in

struction, the program reads the code that was stored when the P register was

pushed on the stack. The LDA $0104,X instruction does this. The "4" in this

instruction comes from the fact that the P register is currently stored four loca

tions above the location currently identified by the stack pointer.

In short, the code in the P register just before the interrupt is now in the

accumulator. If the interrupt was caused by a BRK instruction, then bit four,

the break flag, in the P register will be set; otherwise, the B flag will be cleared.

The AND #$10 instruction in Table 9-4 masks all of the bits except the B flag

bit. Thus:

• If the interrupt was produced by a BRK instruction, the JMP ($0316) instruc

tion is executed.

• If the interrupt was produced by a signal on the IRQ pin, the JMP ($0314) in

struction is executed.

Hence, the first portion of the interrupt routine saves the A, X, and Y

registers, as well as modifying the program flow, depending on whether

a software or hardware interrupt occurred.
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TheJMP instructions in Table 9-4 are both indirectjumps to locations inR/W

memory. Users can, therefore, modify these jump vectors to point to their

own interrupt or break routines.

When you apply power to the Commodore 64, it will set the IRQ indirect

jump vector to $EA31 and the BRK indirect jump vector to $FE66. You may

wish to disassemble the routines starting at these locations to see what hap

pens during an interrupt or a BRK. Among other things, the IRQ interrupt

scans the keyboard to see if a key has been pressed. If so, the ASCII code cor

responding to the key is stored in a buffer. A timer in the 6526 CIA #1 pro

duces interrupts at a rate of 60 Hz, and therefore the keyboard is scanned 60

times every second.

We do not wish to pursue this further because we have enough informa

tion to begin writing our own interrupt routines, which will give us a better

idea ofhow interrupts work. The interrupt routine used by the Commodore

64 operating system is very complex, andwe will not delve more deeply into

it. Instead, we will make use of the SCNKEY subroutine in the operating

system to design our own interrupt-driven keyboard routine.

VIII. Using Interrupts to Read the Keyboard*

To illustrate these concepts, we will provide a programming example in

which the keyboard on the Commodore 64 is read on an interrupt basis. For

the moment, we will not be concerned with how the 6526 CIA produces in

terrupts: we will merely accept the fact that this chip produces an IRQ signal

on the IRQ pin of the 6510 at a rate of 60 Hz. The form of the interrupt signal

is illustrated in Figure 9-4. The 6526 CIA switches the IRQ pin to zero volts

when it produces an interrupt request. Near the conclusion of the interrupt

routine, the signal is switched back to five volts by reading location $DC0D.

Our program is listed in Example 9-5 and a flowchart of this program is

shown in Figure 9-5. The so-called main program begins by setting the in

terrupt flag. We do not wish any interrupts to be recognized while we are

modifying the indirect jump vector in the Commodore 64 interrupt routine.

Refer to Table 9-4 and our discussion in the previous section. Once we have

modified the indirect jump vector with lines 12 through 15 in the main pro

gram, the interrupt flag is cleared to allow interrupts, and the program loops

endlessly, unless interrupted, in the JMP HERE loop on line 17.

As we described above, the interrupt routine starts at $FF48 in the Com

modore 64 operating system. Then, by means of the indirect jump, it can

be made to jump to our routine starting at location $C100. The listing of

the IRQ routine starts on line 22 of Example 9-5. SCNKEY is an operating

system subroutine that scans the keyboard. If a key is pressed, it stores

the keycode at location $0277 + X, and then increments X, which it saves

at location $00C6. If a key is not pressed, X will not be incremented. The

initial value of X is zero. Thus, if X remains at zero, no key was pressed
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and the branch on line 24 produces a quick exit from the interrupt routine.

On the way out, the registers are restored with lines 30 through 34. Recall that

the Commodore 64 routine saves the registers (see Table 9-4).

If a key is pressed, the keycode is read by loading the code in $0277 into

the accumulator. The operating system subroutine CHROUT is called to out

put the character to the screen. The interrupt routine is then completed by

restoring the registers and executing the RTI instruction.

Example 9-5. An Interrupt Routine to Read the Keyboard

Object: Read the Commodore 64 keyboard on an interrupt basis and out

put the characters to the screen.

10

11

12

13

14

15

16

17

1 Rx o

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

MAIN

HERE

IRQ

OUT

;MAIN PROGRAM

SEI

LDA #00

STA USRVTR

LDA #$C1

STA USRVTR+1

CLI

JMP HERE

EQU $C100

;INTERRUPT ROUTINE.

JSR SCNKEY

LDX +$C6

BEQ OUT

DEX

STX +$C6

LDA $0277

JSR CHROUT

LDA IRQCTL

PLA

TAY

PLA

TAX

PLA

RTI

;DISABLE IRQ WITH 1=1.

;SET UP INDIRECT JUMP VECTOR TO

;POINT TO USER INTERRUPT ROUTINE.

;INDIRECT JUMP VECTOR IS $C100.

;VECTOR STORED AT $0314-$0315.

;ENABLE IRQ WITH 1=0.

;STAY IN THIS INFINITE LOOP.

;SCAN THE KEYBOARD.

;X=0 IF NO KEY HAS BEEN PRESSED.

;CONCLUDE INTERRUPT ROUTINE.

;RETURN X TO ZERO.

;GET THE CHARACTER CODE.

;OUTPUT IT.

;RESET THE IRQ SIGNAL TO 5V.

;RESTORE THE REGISTERS BEGINNING

;WITH THE Y REGISTER.

;PULL A (X) FROM THE STACK.

;TRANSFER A TO X.

;FINALLY, GET A FROM THE STACK.

;RETURN FROM INTERRUPT.

cooo

C001

C003

C006

C008

C00B

cooc

C100

C100

C103

C105

C107

C108

C10A

C10D

C110

C113

C114

C115

C116

C117

C118

78

A9

8D

A9

8D

58

4C

20

A6

F0

CA

86

AD

20

AD

68

A8

68

AA

68

40

00

14

Cl

15

OC

87

C6

09

C6

77

D2

0D

03

03

CO

EA

02

FF

DC

ram in Example 9-5. Execute it with a SYS 49152 command.

Type on the keyboard and observe the results. Study the program in conjunc

tion with the flowchart in Figure 9-5. Make sure you understand how it works.

The program in Example 9-6 is another program to read the keyboard on

an interrupt basis. A flowchart is given in Figure 9-6. It differs from the pro

gram in Example 9-5 in several important ways. First, the interrupt routine

stores the character codes in a memory buffer consisting of one page of

memory. The buffer extends from $CF00 to $CFFF. Each time a character is

entered it is stored in this buffer and the pointer, symbolized by IAL, is in
cremented to point to the next location in the buffer.

In the main program, the buffer is emptied. The first code placed in the
buffer will be the first code taken out of the buffer. This kind of buffer is
called afirst-in, first-out (FIFO) buffer. In Example 9-6, we decided not to
output the character to the screen. Instead, we decided to output the hex

adecimal code using subroutine PRBYTE in Example 9-3. In this way, you
can determine the codes that correspond to each key.
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SAVE

REGISTERS

/ SCAN /
/keyboard/

CLEAR

INTERRUPT.

RESTORE

REGISTERS.

RTI

MAIN PROGRAM

OUTPUT /
ARACTER/

INFINITE

LOOP 1

Figure 9-5. Flowchart of the program in Example 9-5.

Study the program, the comments, and the flowchart. Ideas similar to these

are used frequently for input and output of information, so it will be worth

your while to come to grips with these programs. Notice that the (IND),Y ad

dressing mode is used to fill the buffer in the interrupt routine and to empty

the buffer in the main program. Run the program and make a table of

characters and keycodes.
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INTERRUPT ROUTINE

SAVE

REGISTERS

/ SCAN /
/KEYBOARD/

NO

PLACE

CHARACTER

IN

BUFFER

INCREMENT

BUFFER

ROINTER

(IAL)

CLEAR

INTERRUPT.

RESTORE

REGISTERS.

MAIN PROGRAM

INITIALIZE

POINTERS

AND

VECTORS

COMPARE

IAL WITH FIFO

(IAL) — (FIFO)

OUTPUT

/CHARACTEF
/ CODE

INCREMENT

FIFO

POINTER

(FIFO)

Figure 9-6. Flowchart of the program in Example 9-6.
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Example 9-6. An Interrupt-Driven Keyboard with

a Buffered Input

Object: Read the keyboard on an interrupt basis and store the codes in a one-

page buffer. The main program should output the codes from the buffer.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

MAIN

LOOP

IRQ

OUT

;MAIN PROGRAM

SEI

LDA

STA

LDA

STA

STA

STA

LDA

STA

STA

CLI

LDA

CMP

BEQ

LDY

LDA

JSR

INC

CLV

BVC

;

;

EQU

#$C1

USRVTR+1

#$00

USRVTR

+ IAL

+FIFO

#$CF

+IAL+1

+FIFO+1

+ IAL

+FIFO

LOOP

#0

(FIFO),Y

PRBYTE

+FIFO

LOOP

$C100

;INTERRUPT ROUTINE

JSR

LDX

BEQ

DEX

STX

LDA

LDY

* STA

INC

LDA

PLA

TAY

PLA

TAX

PLA

RTI

SCNKEY

+ $C6

OUT

+ $C6

$0277

#0

(IAL),Y

+ IAL

IRQCTL

;DISABLE IRQ WITH 1=1.

;SET UP INDIRECT JUMP VECTOR TO

;POINT TO USER INTERRUPT ROUTINE.

;INDIRECT JUMP VECTOR IS $C100.

;VECTOR STORED AT $0314-$0315.

;SET UP INDIRECT INDEXED POINTERS.

;FIFO BUFFER WILL BE LOCATED

;FROM $CF00 TO $CFFF.

;ENABLE IRQ WITH 1=0.

;DO BUFFER POINTERS MATCH.

;IS (IAL)+= (FIFO)?

;YES, SO WAIT IN THIS LOOP.

;USE (IND),Y MODE WITH Y=0.

;GET CODE FROM THE BUFFER.

;PRINT THE BYTE IN THE BUFFER.

;ADVANCE THE POINTER.

;FORCE A BRANCH.

;GO BACK TO CHECK THE BUFFER.

;SCAN THE KEYBOARD.

;X=0 IF NO KEY HAS BEEN PRESSED.

;CONCLUDE INTERRUPT ROUTINE.

;RETURN X TO ZERO.

;GET THE CHARACTER CODE.

;USE (IND),Y MODE WITH Y=0.

;STORE CODE IN THE BUFFER.

;INCREMENT THE POINTER.

;RESET THE IRQ SIGNAL TO 5V.

;RESTORE THE REGISTERS BEGINNING

;WITH THE Y REGISTER.

;PULL A (X) FROM THE STACK.

;TRANSFER A TO X.

;FINALLY, GET A FROM THE STACK.

;RETURN FROM INTERRUPT.

C000

C001

C003

C006

C008

C00B

C00D

C00F

C011

C013

C015

C016

C018

C01A

C01C

C01E

C020

C023

C025

C026

C100

C100

C103

C105

C107

C108

C10A

C10D

C10F

cm

C113

C116

C117

C118

C119

C11A

CUB

78

A9 Cl

8D 15 03

A9 00

8D 14 03

85 FB

85 FD

A9 CF

85 FC

85 FE

58

A5 FB

C5 FD

F0 FA

A0 00

Bl FD

20 13 C8

E6 FD

B8

50 EE

20 87

A6 C6

F0 0C

CA

86 C6

AD 77 02

A0 00

91 FB

E6 FB

AD ODDC

68

A8

68

AA

68

40

IX. NMI-Type Interrupts4

The NMI-type interrupt is similar to the IRQ-type interrupt, so we will only

describe the differences.

One, an NMI-type interrupt is producedby a negative transition on the NMI

pin on the 6510 microprocessor. This signal is illustrated in Figure 9-7.

Two, as its name implies, an NMI-type interrupt is nonmaskable. An NMI-

type interrupt is always recognized. Setting the I flag with the SEI instruction

does not prevent an NMI-type interrupt.
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FIVE VOLTS

ZERO VOLTS

Figure 9-7. Signal to produce an NMI-type interrupt.

Three, the NMI vector is found in the locations with addresses $FFFA and

$FFFB.

Other than this, NMI-type interrupts work in the same way as IRQ-type

interrupts. Since different locations are used for the NMI vector, you can have

either an NMI-type interrupt routine, an IRQ-type interrupt routine, or both,

in different places in memory. This concludes our brief discussion of the NMI-

type interrupt. It wouldbe a good exercise for you to trace the NMI-type inter

rupt handling structure of the Commodore 64.

X. Summary

The 6510 microprocessor provides three ways in which you can exit one

program to execute another routine. The routine can be a subroutine, an

IRQ-type interrupt routine, or an NMI-type interrupt routine. A subroutine

is called with aJSR instruction. AnIRQ-type interrupt routine is executed with

the appropriate signal on the IRQ pin or with a BRK instruction. The NMI-

type interrupt routine is executed with the appropriate signal on the NMI pin.

A special portion of memory known as the stack is used to process these

routines. The stack is used to store return address information and to save

the contents of the various registers in the 6510.

To fully use the power of interrupts, you must understand the interrupt

handling routines that are built into the operating system of the Commodore 64.

XL Exercises

1. POKE any number into location $0315. What happens? Why?

2. Modify subroutine GETBYT in Example 7-4 by replacing the TXA and TAX

instructions with stack operation instructions.

3. Subroutine GETBYT in Example 7-4 calls the operating system subroutine

GETIN that modifies A, X, and Y. How can you preserve X and Y during a

calltoGETIN?

4. Since the Commodore 64 provides interrupts at a rate of 60 Hz, you can make

a 24-hour clock. Write a routine that increments a memory location, call it

SIXTY, during each interrupt. When the number in SIXTY reaches 60, it
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should be cleared and another location, call it SECNDS, is incremented. Ex

tend this thinking to a location called MINUTS and HOURS. Do this using

BCD arithmetic, and use subroutine PRBYTE to display each location. You

now have a 24-hour clock program.

5. Place aBRKinstruction at $C000 and then execute it from this BASICprogram:

10 SYS 49152 : PRINT "HELLO"

Explain what happens.

6. A JSR instruction is located beginning at $89AB. If the stack pointer is $31,

what information will be stored at what locations on the stack when the JSR

instruction is executed? What will the stack pointer be after the JSR instruction

is executed? What numbers are stored on the stack when the JSR HEXCII in

struction in Example 9-3 is executed?

7. In Example 9-5, it is always the JMP HERE instruction that is interrupted.

What values for the program counter will be stored on the stack when this

instruction is executed?

8. What will happen in Example 9-6 if the TAY andTAX instructions are inter

changed? Try it? Why was the order TAY first, TAX second used in this

program?

9. Disassemble and analyze as much of the Commodore 64 IRQ-type interrupt

routine as you can.

10. Write an interrupt routine to read and display the TOD clock on the 6526 CIA

during each interrupt. Refer to Example 7-7 for some hints. The main pro

gram should set the clock and start it. The interrupt routine should read and

display each of the four TOD registers.





Programming the 6581

Sound Interface Device

I, Introduction

In the concluding three chapters of this book, we will explore some of the

many applications that are made possible by the special-purpose integrated

circuits (chips) found in the Commodore 64. These integrated circuits include

the 6581 SID (sound interface device), the 6567VIC (video interface chip), and

the 6526 CIA (complex interface adapter). In this chapter, we will examine

the music-making capabilites of the 6581 SID.

There are an extraordinary number of sound effects that can be produced

with the SID. The focus of this chapter will be a series of routines that will

play a song using the SID's three voices. In the process you will learn some

programming techniques, and ^programming style will emerge. Thus, in
addition to learning about the SID, you will also be reviewing the topics

covered in the previous nine chapters, and you will be exposed to a particular

programming perspective.

The SID also has two analog inputs that are generally used as game paddle

inputs. These inputs prove to be useful as simple analog-to-digital converters.

To use the two potentiometer inputs, however, you must also program the 6526

CIA, so we will postpone this topic until Chapter 12.

II. A Brief Introduction to Music Synthesis

The SID is a powerful, three-voice music synthesizer, not significantly dif

ferent from a Moog synthesizer. The Moog synthesizer depended on analog

voltages to control its various modules. The modules were interconnected by

numerous patch cords. Onthe other hand, the SID is a digital device, that is,

the circuit modules in the SID are controlled by numbers that are written to

its registers. There is no need for patch cords. Parameters are set and switches

are thrown by writing numbers to the SID registers under the control of a

179
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computer program. The SID is controlled by a program rather than knobs and

patch cords. There are advantages and disadvantages associated with either

the analog or digital technique.

If you are interested in computer music applications, you should obtain a

book on music synthesis. Space permits only a brief, oversimplified introduc

tion to the topic in this book.

There are four characteristics that define the sound perceived by you when

you hear an instrument play. These are the loudness (volume), pitch (fre

quency), quality (timbre), and the dynamics (time varying characterstic) of a

note. Of these four, loudness and pitch are probably already familiar concepts

to you. You are familiar with loudness because it is a parameter that you can

control on devices that reproduce music, for example, your stereo. One of

the SID registers allows you to control the volume on a scale of 0 to 15, where

0 is silence.

The pitch of a sound is determined by its frequency. The frequency is the

number of vibrations per second that the instrument makes. For example,

each string on a guitar vibrates back and forth at a frequency determined by

the length and mass of the string. Frequency is expressed in Hertz (Hz), and

on the scale used by most music synthesizers, the A note above middle C is

exactly 440 Hz. Each of the 12 notes, C, C#, D, D#, E, F, F#, G, G#, A, A#,

and B, has its own pitch. These notes are repeated in octaves above and below

this central or middle octave. For example, the A above the middle A has a

frequency of 880 Hz, while the A below the middle A has a frequency of 220

Hz. Each octave corresponds to a factor of two in frequency.

To control the frequency of a tone, the SID uses two eight-bit registers as

one 16-bit frequency control number. Thus, there is a MSB (most-significant

byte) and a LSB (least-significant byte) for the frequency. The numberwritten

to the SID frequency-control register is not the frequency. The frequency is

determined by the number in the register and the frequency of the Com

modore 64 system clock. The formula for the frequency, F, of the note is

F = 0.06097*N

where N is the 16-bit number in the frequency register.

Nowwe must pursue the more difficult topic of timbre (note quality). When

a note is played on a musical instrument, such as a piano, there is more than

one frequency present. Suppose you strike the middle A key. The dominant

frequency, called thefundamental, will be 440 Hz. But there will also be some

musical energy present at 880 Hz, 1,320 Hz, 1,760 Hz, and so on. These other

frequencies are called harmonics. They are multiples of the fundamental fre

quency. An important characteristic of a sound is the amount of energy pre

sent in each of the harmonics. This characteristic-is called timbre, or quality.

Timbre is determined by the harmonic structure of the sound. A trumpet, sax

ophone, and violin produce notes with quite different harmonic structures,

so that the most untrained ears can still distinguish between these in

struments. Even two brass instruments, the trumpet and the French horn,

for example, have a different harmonic structure. The essential idea behind
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electronic music synthesis is the summation of harmonics from a number of

electronic oscillators in the appropriate amounts to produce the desired timbre.

In principle, it is possible to synthesize the tone from a Stradivarius violin.

Synthesizing a specific quality turns out to be very difficult, and a different

approach is used in most electronic synthesizers, including the SID.

Modifying the harmonic structure, and consequently the timbre, of a sound

has a somewhat suprising effect on the waveform. The waveform is the

amplitude of the sound as a function of time. The flute, for example, has

almost no harmonic content above the fundamental frequency, and its

waveform is almost a pure sine wave, one cycle of which is shown in Figure

10-1. When the A note is played, there are 440 of these sine wave cycles that

occur in one second. A pure sine wave has no harmonics.

AMPLITUDE
TIME

Figure 10-1. Sine waveform.

On the other hand, a triangular waveform, pictured in Figure 10-2, has some

harmonics. When compared by ear, the triangle waveform will have a slightly

richer quality to it than the sine waveform. An even richer tone is produced

with the ramp waveform, pictured in Figure 10-3. The ramp waveform fre

quently is used to duplicate the sound of a stringed instrument, Another

waveform with rich harmonic content is the square waveform pictured in

Figure 10-4. The harmonic structure of a square waveform can be modified

by changing the pulse width. In Figure 10-5, we picture two cycles of a square

waveform with a 25 percent pulse width. It is high for 25 percent of the time

and low for 75 percent of the time.

The typical electronic synthesizer does not combine different frequency com

ponents to produce the desired waveform. The typical synthesizer offers

several possible waveforms that are thenfiltered to produce the desired har

monic content. The SID is no exception. Under program control, you can select

either a triangle waveform, a ramp waveform, or a square waveform. In addi

tion, the pulse width of the square waveform is programmable.

AMPLITUDE
TIME

Figure 10-2. Triangle waveform.
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AMPLITUDE
TIME

Figure 10-3. Ramp waveform.

AMPLITUDE
TIME

Figure 10-4. Square waveform.

j

AMPLITUDE
TIME

Figure 10-5. Two cycles of a square waveform with a 25 percent pulse width.

The usual approach to music synthesis is to start with a waveform that has

a rich harmonic structure, such as the ramp waveform, and filter, or reject,

the undesired frequencies. This is also how the SID works. The SID has a filter

that can be programmed as either a low-pass, band-pass, or high-pass filter. A

low-pass filter allows frequencies below a certain cut-off frequency to pass

through it, but frequencies above the cut-off frequency are severely atten

uated. If you apply a triangle waveform to a low-pass filter whose cut-off fre

quency is slightly higher than the frequency of the triangle waveform, then

the fundamental will pass through the filter, but the higher harmonics will

not. The result is a pure sine waive. The same effect can be produced with a

ramp or square waveform.

A high-pass filter allows the frequencies above the cut-offfrequency to pass

through, and it attenuates the frequencies below the cut-off frequency. A

band-pass filter allows a band of frequencies near a center frequency to pass
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through, attenuating frequencies outside of the band. The SID can be pro

grammed to behave as either a low-pass, high-pass, or band-pass filter. The

cut-off frequency is programmable, as is the center frequency of the band

pass filter. A variety of interesting effects, includingWAH-WAH, canbe pro

duced by varying the cut-off frequency of the filter as a note is being played.

We conclude this section with the concept of note dynamics. So far, we have

discussed notes as if they were a more or less continuous sound. Each note,

however, has a definite time duration, and, moreover, within this interval

there is a structure to the intensity of the sound. Thus, not only are there whole

notes, half notes, quarter notes, etc., each of which has a beginning and an

end, but there is also an intensity structure between the beginning and the

end. This is what is meant by note dynamics.

The intensity structure is frequently described in these terms: attack, decay,

sustain, release. These concepts are illustrated in Figure 10-6. A diagram such

as this is called anADSR envelope. The sketch in Figure 10-6 illustrates a single

note. The start of the note initializes the attack phase. During this period, the

length of which is symbolized by A, the volume increases to a peak value.

The part of the note symbolized byR is called the release. During this interval,

the volume decreases to a constant level where it is sustained. The duration

of the sustain interval is essentially the length of the note. Whenyou are play

ing a trumpet, for example, and you run out of wind, the sustain level must

come to an end. During the decay the sound volume decays quickly to zero.

VOLUME

♦—SUSTAIN

VOLUME

LEVEL

L:START EN

TIME

Figure 10-6. ASDR note envelope showing the attack, release, sustain, and

decay phases.

A musical instrument can be recognized by its ADSR envelope. A pipe

organ has attack, release, and decay times that are essentially zero. In other

words, the volume rises almost instantaneously to its sustain level,

remains there throughout the duration of the note, and then drops quickly

to zero at the end of the note. A percussion instrument has no sustain
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level. The release moves right into a rapid decay. A plucked stringed instru

ment, such as a guitar, has a very short attack, no sustain interval, but a very

long release-decay time.

As in the case of the other parameters mentioned so far, the SID's ADSR

envelope is programmable. Each of the four parameters, A, D, S, and R, is

under the control of the programmer. Remember that A, D, and R are time

intervals, while S is a volume level. The actual duration of the sustain interval

must be controlled with either a timing loop or a timing device. We will use

a simple timing loop in our programs.

To summarize, the SID gives you control over the volume, frequency, timbre

(harmonic content of the waveform and the filter parameters), and the note

dynamics. It does this for each of three voices that are independently program

mable. Besides the three waveforms mentioned above, you can select a noise

source to produce the sounds of surf, snare drums, shots, and 747's taking off.

This concludes our brief description of the basic elements of music synthesis.

Perhaps it should be noted that the motivation of electronic music synthesis

has gone far beyond trying to duplicate other musical instruments, and elec

tronic sound generation has become a musical endeavor in its own right. Are

the sounds associated with an arcade-style video game music?

III. The Registers of the 6581 SID Chip

Programming the SID means writing the appropriate numbers to some of

its 29 registers. The registers are listed in Table 10-1. Twenty-five ofthe 29 SID

registers are write-only registers, while the other four are read-only registers. That

the registers are either write-only or read-only has important implications for

programming the SID. Several of the instructions in the 6510 instruction set

are so-called read-modify-write instructions. These instructions, including

INC, DEC, ASL, LSR, ROL, and ROR, involve both a read and a write. They

are, therefore, perfectly useless when dealing with the SID.

In the programs that follow, we will deal with this problem in the follow

ing way. An image of the 25 write-only registers will be maintained in the R/W

memory locations whose addresses include $CB80 through $CB98. The codes

in these locations will be processed just as if these locations were the SID

registers. Read-modify-write instructions can be used. When our image

registers are correctly programmed, we will simply transfer numbers in the

image locations $CB80 through $CB98 to the registers in the SID chip, loca

tions $D400 through $D418, respectively.

Since the first step in programming the SID chip is to clear all of the

write-only registers, we can illustrate the ideas mentioned above with the

first programming example in this chapter, Example 10-1. Example 10-1

is a subroutine to clear the image registers. In a subsequent example we

will provide a subroutine to transfer all of the image register contents to

the SID. Thus, in this case, clearing the SID registers involves two steps.

First clear the image, then transfer the image to the SID. Notice the use

of the ABS,Y addressing mode in Example 10-1.
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The subroutine to transfer the image to the SID registers is listed in Exam

ple 10-2. It merely transfers the numbers in the 25 memory locations in the

SID image to the SID itself.

Table 10-1.

Address

(Hex)

$D400

$D401

$D402

$D403

$D404

$D405

$D406

$D407

$D408

$D409

$D40A

$D40B

$D40C

$D40D

$D40E

$D40F

$D4l0

$D4ll

$D4l2

$D4l3

$D4l4

$D415

$D416

$D417

$D4l8

$D4l9

$D4lA

$D4lB

$D4lC

Memory

Register

FREQ L0

FREQHI

PWLO

PWHI

CONTROL

ATK/DCY

STN/RLS

FREQ L0

FREQHI

PWLO

PWHI

CONTROL

ATK/DCY

STN/RLS

FREQLO

FREQ HI

PWLO

PWHI

CONTROL

ATK/DCY

STN/RLS

FCLO

FCHI

RES/FLT

MOD/VOL

POTX

POTY

OSC/RND

ENVLP3

map of the SID

D7

F7

F15

PW7

PW15

NOIS

ATK3

STN3

F7

F15

PW7

PW15

NOIS

ATK3

STN3

F7

F15

PW7

PW15

NOIS

ATK3

STN3

_

FC10

RES3

30FF

]

PX7

PY7

07

E7

D6

Voice

F6

F14

PW6

PW14

SQAR

ATK2

STN2

1 registers.

Data Bit Number

D5

>One

F5

F13

PW5

PW13

RAMP

ATK1

STN1

Voice Two

F6

F14

PW6

PW14

SQAR

ATK2

STN2

F5

F13

PW5

PW13

RAMP

ATK1

STN1

Voice Three

F6

F14

PW6

PW14

SQAR

ATK2

STN2

F5

F13

PW5

PW13

RAMP

ATK1

STN1

Filter

-

FC9

RES2

HIPS

-

FC8

RES1

BDPS

Miscellaneous

(Read Only)

PX6

PY6

06

E6

PX5

PY5

05

E5

D4

F4

F12

PW4

PW12

TRNG

ATK0

STN0

F4

F12

PW4

PW12

TRNG

ATK0

STN0

F4

F12

PW4

PW12

TRNG

ATK0

STN0

FC7

RES0

LOPS

PX4

PY4

04

E4

D3

F3

Fll

PW3

PW11

TEST

DCY3

RLS3

F3

Fll

PW3

PW11

TEST

DCY3

RLS3

F3

Fll

PW3

PW11

TEST

DCY3

RLS3

-

FC6

EXT

V0L3

PX3

PY3

03

E3

D2

F2

F10

PW3

PW10

RING

DCY2

RLS2

F2

F10

PW2

PW10

RING

DCY2

RLS2

F2

F10

PW2

PW10

RING

DCY2

RLS2

FC2

FC5

FLT3

V0L2

PX2

PY2

02

E2

Dl

Fl

F9

PW1

PW9

SYNC

DCY1

RLS1

Fl

F9

PW1

PW9

SYNC

DCY1

RLS1

Fl

F9

PW1

PW9

SYNC

DCY1

RLS1

FC1

FC4

FLT2

V0L1

PX1

PY1

01

El

DO

F0

F8

PW0

PW8

GATE

DCY0

RLS0

F0

F8

PW0

PW8

GATE

DCY0

RLS0

F0

F8

PW0

PW8

GATE

DCY0

RLS0

FC0

FC3

FLTl

VOL0

PX0

PY0

00

E
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Example 10-1. Clearing the SID Image

Object: Clear the SID image located from $CB80 through $CB98.

10 CLEAR LDA #00 ;CLEAR SID'S REGISTERS. CA00 A9 00

11 LDY #$19 CA02 A0 19

12 BR1 STA IMAGE-1,Y CA04 99 7P CB

13 DEY CA07 88

14 BNE BR1 CA08 DO FA

15 RTS CA0A 60

Example 10-2. Transferring the Image to the SID

Object: Transfer the codes in the 25 memory locations that make up the SID

image to the SID.

10

11

12

13

14

15

TNSFER

LOOP

LDY

LDA

STA

DEY

BNE

RTS

#$19

IMAGE-1,Y

SID-1,Y

LOOP

;GET IMAGE

;STORE IT

BYTE.

IN SID.

CAE0

CAE2

CAE5

CAE8

CAE9

CAEB

A0

B9

99

88

DO

60

19

7F

FF

F7

CB

D3

Refer once again to the SID register summary in Table 10-1. There are seven

registers associated with each voice. These registers must be properly initial

ized with the frequency, pulse width (in the case of a square waveform), and

ADSR envelope parameters before starting to play a note. The desired

waveform must also be chosen. In a moment, we will deal with the two fre
quency registers, FREQ LO and FREQ HI, for each of the three voices. Let

us begin by studying the CONTROL register.

Associated with each of the three voices is a control register, CONTROL.

The high-order nibble of each control register is used to select the desired

waveform, noise, square, ramp, or triangle. You place a one in the bit that

corresponds to the waveformyou want the voice to output. To begin, we sug

gest that you do not complicate matters by choosing more than one waveform

for a given voice, but you may wish to experiment with this later.

The test bit will be of no real use to us. It stops the oscillator in a known

condition for testing purposes. Consult the Programmer's Reference Guide, page

463, for details.

We are still focusing on the control registers. The RING and SYNC bits,

when set, tie the voices together and produce unusual and complex harmonic

structures. You are encouraged to experiment with these bit settings once our

song routines are in place. For the time being, we will settle for the more con

ventional harmonies of Auld Lang Syne, by Robert Burns.

When switched to one, the GATE bit starts the voice. In particular, it starts

the attack part of the ADSR envelope. The ADSR envelope will stay in the

ADS phase as long as the gate bit is one. In other words, it will sustain the

note as long as the gate bit is set. The end of a note begins when the gate bit

is cleared. This event initiates the release phase of the ADSR envelope.
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The ADSR envelope parameters are determined by the numbers stored in

the ATK/DCY and STN/RLS registers. Refer to Table 10-1 to identify these

registers, and refer to Table 10-2 to find the relationship between the numbers

that you will store and the corresponding time. To choose an attack time of

24 milliseconds, store $3 in the high-order nibble of the ATK/DCY register.

To choose an equal decay time, store a $1 in the low-order nibble of the

ATK/DCY register. The STN/RLS register is treated in the same way. The sus

tain nibble contains a number from 0 to 15 that controls the volume of the sus

tain level. The release nibble in the STN/RLS register is chosen with reference

to Table 10-2. To have a sustain level of 11 and a release time of 24 milliseconds,

load the STN/RLS register with $B1.

Table 10-2. Attack, release,

Register Value

(Decimal)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(Hex)

$0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

and decay parameters.

Attack Time

(Milliseconds)

2

8

16

24

38

56

68

80

100

250

500

800

1000

3000

5000

8000

Is

3s

5s

8s

Release or Decay Time

(Milliseconds)

6

24

48

72

114

168

204

240

300

750

1500

2400

3000

9000

15000

24000

1.5s

2.4s

3s

9s

15s

24s

Example 10-3 illustrates some of these concepts. In this example, we initialize

Voice #1 to produce a triangle waveform with the ADSR parameters just men

tioned. Remember, we begin by storing these numbers in the SID image.

Notice that, for the time being, the gate for Voice #1 is off.

Example 10-3. Initialize Voice #1

Object: Set up Voice #1 to produce a triangle waveform with equal attack,

decay, and release times of 24 milliseconds, and a sustain level of 11.

10 VOICE1

11

12

13

14

15

LDA

STA

LDA

STA

LDA

STA

#$10

CR1

#$31

ATKDK1

#$B1

STNRL1

;SELECT TRIANGLE WAVEFORM.

;CONTROL REGISTER FOR VOICE 1.

;SELECT ATTACK/DECAY RATE FOR

;VOICE 1.

;SET SUSTAIN LEVEL AND RELEASE

;RATE FOR VOICE 1.

CA0B

CA0D

CA10

CA12

CA15

CA17

A9

8D

A9

8D

A9

8D

10

84

31

85

Bl

86

CB

CB

CB
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Example 10-4 is much like Example 10-3 except a ramp waveform is selected

for Voice #2, and different parameters are selected for the ADSR envelope.

Study Table 10-2 and identify the ADSR parameters from the program.

Example 10-4. Initialize Voice #2 ~~~

Object: Set up the Voice #2 registers. Select a ramp waveform.

10 VOICE2 LDA #$20 ;SELECT RAMP WAVEFORM. CA1A A9 20
11 STA CR2 ;CONTROL REGISTER FOR VOICE 2. CA1C 8D 8B CB
12 LDA #$83 ;SELECT ATTACK/DECAY RATE FOR CA1F A9 83
13 STA ATKDK2 ;VOICE 2. CA21 8D 8C CB
14 LDA #$A3 ;SET SUSTAIN LEVEL AND RELEASE CA24 A9 A3
15 STA STNRL2 ;RATE FOR VOICE 2. CA26 8D 8D CB

In our next example, we initialize Voice #3 by choosing a square waveform.

An attack time of 24 milliseconds followedby a decay time of 100 milliseconds

is chosen. Notice that the sustain level is only four. The note will begin to decay

to a very low volume as soon as it reaches its peak volume. A long release

time, 300 milliseconds, was also chosen.

If a square waveform is selected, then a decision about the pulse width must

be made, and the pulse width, PW, registers must be initialized. Continue

to refer to Example 10-5. The PW registers require a 12-bit number whose low

order nibble is stored in the register calledPWLO (see Table 10-1). The pulse

width, expressed as a percent of the entire cycle time, is given by the formula:

PW% = N/40.95

where N is the 12-bit number stored in the PW registers. AnN of $FFF = 4,095

produces a constant output that produces no sound. A 50 percent pulse width

or a perfectly square wave is obtained by choosing N = 2,048 = $800. In

Example 10-5, we chose $900 to be our number, giving a pulse width of ap

proximately 56 percent. You are encouraged, once again, to experiment with

these values to obtain different sounds. In any case, Example 10-5 illustrates

how to initialize a voice for a square waveform.

Example 10-5. Initialize Voice #3 "

Object: Set up Voice #3 to produce a square waveform with a pulse width

of 56 percent.

10 VOICE3 LDA #$40 • ;SELECT PULSE WAVEFORM. CA29 A9 40

11 STA CR3 ;CONTROL REGISTER FOR VOICE 3. CA2B 8D 92 CB

12 LDA #$38 ;SELECT ATTACK/DECAY RATE FOR CA2E A9 38

13 STA ATKDK3 ;VOICE 3. CA30 8D 93 CB

14 LDA #$48 ;SET SUSTAIN LEVEL AND RELEASE CA33 A9 48

15 STA STNRL3 ;RATE FOR VOICE 3. CA35 8D 94 CB

16 LDA #00 ;SET PULSE WIDTH FOR PULSE CA38 A9 00

17 STA PWLO3 ;WAVEFORM ON VOICE 3. - CA3A 8D 90 CB

18 LDA #$09 . CA3D A9 09

19 STA PWHI3 CA3F 8D 91 CB
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Notice that Examples 10-3 to 10-5 follow each other in memory. We will

conclude this set of programs with Example 10-6, which ends with an RTS

instruction. Thus, these four programs become a single subroutine that in

itializes the three voices and the filter.

Again, you will need to examine Table 10-1 to understand the discussion

that follows. The cut-off frequency of the filter is determined by the 11-bit

number stored in FC LO and FC HI. In the case that the band-pass filter

is chosen, the number in FC LO and FC HI selects the center frequency of

the band-pass filter. The cut-off frequency varies from 30 Hz to 12 kHz, but

the literature is inconsistent regarding the exact relationship between the

number and the frequency. It appears that trial and error is called for. We

found that loading the high byte of the filter with $D0 produced some filter

ing, but did not cut off Voice #1 completely. That is whyyou find this number

in Example 10-6.

The RES/FLT register performs two functions. The RES nibble enhances

the frequencies near the cut-off frequency. It can produce unusual effects. A

nibble value of zero produces no resonance effects, while a nibble value of

15 ($F) produces the most enhanced resonance effects. The FLT nibble of the

RES/FLT register selects which voices will go through the filter. We chose to

illustrate this by routing Voice #1 through the filter, leaving the other voices

unfiltered. Experiment with other options.

The VOL nibble in the MOD/VOL register determines the volume. Volume

levels from 0 to 15 are possible. The MOD nibble allows you to choose the

kind of filter you want—low-pass, band-pass, or high-pass—by setting the

appropriate bit to one. You can even experiment with setting more than one

bit. The 3OFF bit in the MOD/VOL register disconnects Voice #3 from the

audio output. If Voice #3 is also disconnected from the filter, then it can be

used to ring-modulate or synchronize the other voices without being heard.

Example 10-6 illustrates how we fixed the filter parameters for our song.

Example 10-6. Initialize the Filter

Object: Route Voice #1 through a low-pass filter.

10 FILTER LDA #$00 ;SELECT CUTOFF FREQUENCY. CA42 A9 00

11 STA FCLO ;L0W THREE BITS OF FREQUENCY. CA44 8D 95 CB

12 LDA #$D0 ;HIGH EIGHT BITS OF CUTOFF CA47 A9 DO

13 STA FCHI ;FREQUENCY. CA49 8D 96 CB

14 LDA #01 ;PUT VOICE 1 THROUGH FILTER. CA4C A9 01

15 STA RESFIL ;NO RESONANCE SELECTED. CA4E 8D 97 CB

16 LDA #$1F ;SELECT LOW PASS FILTER. SET CA51 A9 IF

17 STA MDVOL ;VOLUME TO MAXIMUM. CA53 8D 98 CB

18 RTS CA56 60

Except for setting the frequency, we have completed the initialization se

quence that is normally accomplished before playing notes. Of course, for

many sounds you need only one voice. In the next section, we will illustrate

techniques to set the frequencies so that a song can be played, but before con

cluding this section, we should complete our discussion of the SID registers.
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The POT X and POT Y are simple analog-to-digital converter registers that

we will describe in some detail in Chapter 12. The OSC/RND register con

tains the most-significant bits of the output of Voice #3. If a ramp waveform

is selected for Voice #3, for example, then the number in the OSC/RND register

will increment linearly with time from 0 to 255, and then it will drop back to

0 and repeat this cycle again and again. If a noise waveform is selected for

Voice #3, then a random number can be read in the OSC/RND register. Note

that this is a read-only register.

Of what use is the number in this register? It may be used to modulate the

numbers in the other registers. For example, to produce vibrato, you would

use your program to add some fraction of the number in the OSC/RND

register to the frequency of one of the voices. Since vibrato must take place

at a slow rate, approximately 10 Hz, this eliminates Voice #3 as an audio

source. Modulating the cut-off frequency also produces some nice sound ef

fects, particularly if one of the inputs to the filter is a very narrow pulse

waveform. Place a zero in the 3OFF bit in the MOD/VOL register for these

applications. By scaling down the number in the OSC/RND register and add

ing it to the VOL nibble, you can produce tremolo.

The ENVLP 3 register contains the output of the ADSR envelope chosen

for Voice #3. This number can be added to the frequency of a voice or to the

frequency of the filter to produce unusual effects. Experiment with these

possibilities.

Perhaps you think that we have left too much to experimentation.

Regardless of whether you are using an analog synthesizer similar to the Moog

synthesizer or a digital synthesizer such as the SID, experimentation is at the

heart of electronic music synthesis. Begin your experiments with a thorough

understanding of what the various parameters are supposed to do. Only then

should you begin to experiment with those parameters. The advantage of an

analog synthesizer is, perhaps, the ease with which experimentation can take

place. The advantage of the digital synthesizer is the precision with which

it may be controlled: its disadvantage is that it is not particularly easy to ad

just in real time.

IV Setting the Voice Frequencies

We are in the process of writing a program that will play a song. With that

general objective in mind, we have already listed several subroutines that we

will need. The SID image must be cleared. Then the SID itself is cleared by

a subroutine to transfer the image in R/W memory to the write-only registers

of the SID. To these two subroutines we have added a subroutine that in

itializes each of the three voices and the filter. These subroutines have been

described in the previous sections of this chapter.

Notice that we did not attempt to write one long program to accomplish

our objective. Instead, we wrote a number of subroutines that accomplish

more specific objectives. These subroutine modules will be combined in a
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subsequent program, and together they will meet the general objective. We

believe that the programming technique of dividing a large task into many

smaller tasks using subroutines as the basic building block is a good technique.

We turn next to the problem of setting the frequencies. When initializing

the SID, we did not set the frequency registers of any of the voices. That is

the task we will perform in this section. The SID is capable of playing notes

over a range of eight octaves. Each octave has 12 frequencies. Each frequency

is specified by a two-byte register in the SID (see Table 10-1). Thus, a table

consisting of 192 bytes would store all of the frequency information needed

to play any note the SID is capable of playing. A table that gives this infor

mation is provided in Appendix E, page 384, of the Programmer's Reference

Guide. We will use a technique, also suggested in the Programmer's Reference

Guide, that reduces the amount of frequency information that needs to be

stored in memory.

Corresponding notes in adjacent octaves differ in frequency by a factor of

two. For example, the A in the treble cleff has a frequency of 440 Hz. The A

in the next higher octave has a frequency of 880 Hz, while the A in the octave

below has a frequency of 220 Hz. To determine the frequency of any note,

you need two items of information, the note and the octave.

Given the frequency of the note in the highest octave and the number of

octaves down of the note you actually wish to play, you can find thefrequency

of this note by dividing the top octave frequency by two for each octave below

the highest octave.

Table 10-3 identifies the frequency information we need for the notes in the

top octave, called octave 7. The lowest octave is called octave 0. The second

column in Table 10-3 gives the number to be loaded into the FREQ LO and

FREQ HI registers to play the note specified in column one. The third and

fourth columns divide the data in the third columninto the numbers for FREQ

HI and FREQ LO, expressed both in decimal and hexadecimal. The last

column in Table 10-3 identifies the address of the location in memory where

this information can be accessed by our program.

Table 10-3. Top octave frequency data.

Note Frequency Number High Byte

(Decimal) (Decimal) (Hex)

Low Byte

(Decimal) (Hex)

Address

C 7

C#7

D 7

D#7

E 7

F 7

F#7

G 7

G#7 ,

A 7

A#7

B 7

34334

36376

38539

40830

43258

45830

48556

51443

54502

57743

61176

64814

134

142

150

159

168

179

189

200

212

225

238

253

$86

8E

96

9F

A8

B3

BD

C8

D4

El

EE

FD

30

24

139

126

250

6

172

243

230

143

248

46

$1E

18

8B

7E

FA

06

AC

F3

E6

8F

F8

2E

$CF00-01

$CF02-03

$CF04-05

$CF06-07

$CF08-09

$CF0A-0B

$CF0C-0D

$CF0E-0F

$CF10-ll

$CF12-13

$CF14-15

$CF16-17
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Once again refer to Table 10-3. To play the A# note in octave seven, we need

to load $F8 from location $CF14 and store it in the FREQ LO register of the

SID, and we need to load $EE from location $CF15 and store it in the FREQ

HI register of the SID. Observe that the LSB of the frequency number is stored

below the MSB of the frequency. To play A# in octave four, we need to halve

the frequency number in Table 10-3 three (7 - 4) times. Recall that a number

may be divided by two with one application of an LSR or ROR instruction.

Figure 10-7 illustrates howwe intend to store the codes required to specify

the frequency. The least-significant nibble of a byte will be used to specify the

note. Since there are 12 notes, C through B, we need 12 numbers; and we

shall use the numbers 0 through 11 to correspond to the notes C through B,

respectively. One nibble is sufficient since a nibble can contain a number as

large as 15. The most-significant nibble of the same byte will be used to specify

the octave of the note. It is convenient to have the number zero specify the top

octave defined in Table 10-3, while the number seven will specify the lowest

octave.

OCTAVE

(

I

1 (

i V

NOTE

i

0-7 0-11

Figure 10-7. The octave/note byte for one voice.

Here is how the information in the octave/note byte illustrated in Figure

10-7 is used. The byte is first read and the top nibble is masked (AND #$0F).

After being multiplied by two, the number in the low nibble is transferred

to the Y register to serve as an index to obtain the frequency information from

the data stored in Table 10-3 with

LDA $CF00,YandLDA $CF01,Y

instructions. Multiplication by two is necessary because there are twice as

many bytes in the table as frequencies: each note requires two bytes to specify

its frequency. The LDA $CF00,Y instruction fetches the low byte of the fre

quency, while the LDA $CF01,Y instruction fetches the high byte.

Once the frequency data is stored in the SID image registers, the octave in

formation in the byte pictured in Figure 10-7 is recalled. It is first shifted to

the low nibble. In the low nibble, this number correctly specifies the number

of halvings required to calculate the frequency for that octave. Thus, the

number of times the frequency in the SID image locations must be divided

by two is specified by the number in the octave nibble. This number will serve
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as the loop counter in a loop whose task is to divide the frequency number

by two. Since the SID has three voices, we need three bytes of octave/note

information like the one pictured in Figure 10-7 in order to play three notes

in harmony.

Notice in Table 10-1 that the SID's frequency registers are located at $00/$01,

$07/$08, and $0E/$0F in page $D4. The corresponding SID image locations

are $80/$81, $87/$88, and $8E/$8F in page $CB of memory. It will be conve

nient to reference these frequency registers using

STA $CB80,XandSTA $CB81,X

instructions where X takes on the values $0, $7, and $E for Voices #1, #2, and

#3, respectively.

We are now ready to introduce our subroutine that provides the frequency

for a voice, given the proper voice number in the X register, and given the

proper octave/note byte in the accumulator. An octave/note byte is pictured

in Figure 10-7. The subroutine is listed in Example 10-7. The voice, octave,

and note parameters are passed to the subroutine in the X and A registers.

The frequency information is obtained from the table stored at $CF00 (refer

to Table 10-3). It is stored in the appropriate FREQ HI and FREQ LO register

in the SID image. Next, the octave information is used to divide this frequency

to place it in the proper octave, completing the subroutine. Observe that if

the octave number is zero, no halving occurs. An octave number of one results

in one division by two, and so forth.

Example 10-7. Frequency Control Subroutine

Object: Turn the codes in an octave/note byte into the correct frequency

numbers in the SID image.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

;SUBROUTINE FREQUENCY

NOTE EQU $CF00

LO EQU $CB80

HI EQU $CB81

FREQ EQU $CA57

;ENTER SUBROUTINE WITH NOTE (0-11) IN LOW

;NIBBLE OF ACCUMULATOR.

fOCTAVE (0-7) IN HIGH NIBBLE OF ACCUMULATOR.

;X REGISTER HAS 0

;AND E FOR VOICE

freq' pha
AND #$0F

ASL A

TAY

LDA NOTE+1,Y

STA HI,X

LDA NQTE,Y

STA LO,X

PLA

AND #$F0

BEQ OUT

LSR A

LSR A

LSR A

LSR A

FOR VOICE 1, 7 FOR VOICE 2,

3.

;SAVE A FOR OCTAVE INFORMATION.

;ISOLATE NOTE INFORMATION.

;THERE ARE TWICE AS MANY BYTES

;IN THE TABLE AS NOTES.

;GET NOTE FROM THE TABLE.

;PUT IT IN THE FREQUENCY REGISTER.

;GET LSB OF NOTE FROM TABLE.

•PUT IT IN .THE FREQUENCY REGISTER.

;GET THE OCTAVE INFORMATION BACK.

;DISREGARD NOTE INFORMATION.

;GET OUT FOR TOP OCTAVE.

;MOVE OCTAVE INFORMATION TO LOW

;NIBBLE.

CF00

CB80

CB81

CA57

CA57

CA58

CA5A

CA5B

CA5C

CA5F

CA62

CA65

CA68

CA69

CA6B

CA6D

CA6E

CA6F

CA70

48

29

0A

A8

B9

9D

B9

9D

68

29

F0

4A

4A

4A

4A

OF

01

81

00

80

FO

OF

CF

CB

CF

CB
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28

29

30

31

32

33

34

AGAIN

OUT

TAY

CLC

ROR

ROR

DEY

BNE

RTS

HI,X

LO,X

AGAIN

;PUT OCTAVE IN Y REGISTER.

;DO NOT ROTATE CARRY.

;DIVIDE BY 2 FOR EACH OCTAVE.

;FREQUENCY IS SET.

CA71

CA72

CA73

CA76

CA79

CA7A

CA7C

A8

18

7E

7E

88

DO

60

81

80

F6

CB

CB

One reason for using an image of the SID in R/W memory becomes clear

in Example 10-7. The ROR HI,X and ROR LO,X instructions will not work

with write-only registers because these instruction involve reading and writing

to a register. In a moment, we will see a similar reason for adopting the SID

image. When we gate a voice by setting bit zero in the control register, we

would like to use an ORA instruction so we set bit zero without modifying

the other bits. An ORA instruction requires a read operation, so it will not

work with a write-only register.

V Note Duration and Volume: Gating the SID

A note is played on the SID by performing all of the operations previously

mentioned, after which bit zero (the GATE bit) in the control register of the

voice is set. At the end of the note this bit must be cleared, beginning the decay

phase of the ADSR envelope.

The subroutine in Example 10-8 sets the gate bits of all three voices, start

ing the note. It also calls the subroutine to transfer the SID image to the SID

itself. The routines mentioned previously will have initialized the SID and

set the frequency parameters. After setting the gate bits in the three control

registers, the SID image is transferred to the SID, causing the SID to operate.

Example 10-8. Gate the SID

Object: Set the gate bits in each of the voice control registers, then transfer

the image to the SID to begin playing.

10 GATEON

11

12

13

14

15

16

17

18

19

20

LDA #$01

ORA CTR1

STA CTR1

LDA #$01

ORA CTR2

STA CTR2

LDA #$01

ORA CTR3

STA CTR3

JSR TNSFER

RTS

;SET GATE BIT.

;VOICE 1.

;SET GATE BIT.

;VOICE 2.

;SET GATE BIT.

;VOICE 3.

;TRANSFER IMAG

CAA0 A9 01

CAA2 0D 84 CB

CAA5 8D 84 CB

CAA8 A9 01

CAAA 0D 8B CB

CAAD 8D 8B CB

CAB0 A9 01

CAB2 0D 92 CB

CAB5 8D 92 CB

CAB8 20 E0 CA

CABB 60

To stop the note, the gate bits in the control registers must be cleared, and

the SID image must once againbe transferred to the SID itself. The program

in Example 10-9 accomplishes this task.

The note is played during the time interval after the gate is set and before

it is cleared. The duration of this interval must be controllable, because it deter

mines the length of the note: whole, half, quarter, eighth, sixteenth, or one
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of the dotted varieties. It is clear that a delay subroutine is required. The delay

routine that we used is given in Example 10-10. The part of the routine begin

ning at the instruction labeled LOOP delays approximately one millisecond

for each count in the X register. The X register is loaded from R/W memory

location $0002. Thus, the number of millisecond delays is controlled by the

number you store in location $0002.

Example 10-9. Switch off the SID

Object: Clear the gate bits in each of the voice control registers, then transfer

the SID image to the SID.

CAC0 A9 FE

CAC2 2D 84 CB

CAC5 8D 84 CB

CAC8 A9 FE

CACA 2D 8B CB

CACD 8D 8B CB

CAD0 A9 FE

CAD2 2D 92 CB

CAD5 8D 92 CB

>ID. CAD8 20 E0 CA

CADB 60

The number of times the delay loops starting at LOAF are executed is one

larger than the number in the accumulatorwhen the subroutine is called. The

number of delays determines the length of the note. It will be 16 for a whole

note, 12 for a dotted half note, 8 for a half note, 6 for a dotted quarter note,

4 for a quarter note, 3 for a dotted eighth note, 2 for an eighth note, and 1 for

a sixteenth note.

10 GATFF

11

12

13'

14

15

16

17

18

19

20

LDA

AND

STA

LDA

AND

STA

LDA

AND

STA

JSR

RTS

#$FE

CTR1

CTR1

#$FE

CTR2

CTR2

#$FE

CTR3

CTR3

TNSFER

;CLEAR GATE

;VOICE 1.

;CLEAR GATE

;VOICE 2.

;CLEAR GATE

;VOICE 3.

BIT.

BIT.

BIT.

;TRANSFER IMAGE

Example 10-10. The

Object: Loo

and the num

10 DELAY

11

12

13

14

15 LOAF

16 LOOP

17 REPET

J-8

19

20

21

Delay/Tempo Subroutine

p for a time interval determinedby the number in location $0002

ber in the accumulator.

JSR LOAF

SEC

SBC #01

BPL DELAY

RTS

LDX +TEMPO

LDY #$CB

DEY

BNE REPET

DEX

BNE LOOP

RTS

;WASTE SOME TIME.

;NUMBER OF DELAYS IS IN A.

;DECREMENT A.

;NUMBER OF MILLISECOND INTERVALS

;IN A SIXTEENTH NOTE.

;THIS LOOP' TAKES 1 MILLISECOND.

;REPEAT X TIMES FOR X MILLISECONDS.

CA7D

CA80

CA81

CA83

CA85

CA86

CA88

CA8A

CA8B

CA8D

CA8E

CA90

20

38

E9

10

60

A6

A0

88

DO

CA

DO

60

86 CA

01

F8

02

CB

FD

F8

We already require three bytes of octave/note information for each note in

the song, one octave/note byte for each of the three voices. We will call the

collection of this information our song table. Now we see that the song table

must also include information about the length of the note. We need,
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therefore, four bytes of information: three octave/note bytes and one

length/volume byte that specifies the length and volume ofthe note. The length
of the note is determinedby a numberbetween 0 and 15, which fits in one nibble.

Recall that the SID volume is also a one-nibble quantity. Thus, the length and

volume can be stored in the single byte diagrammed in Figure 10-8.

LENGTH VOLUME

I L

0 — 15 0—15

Figure 10-8. The length/volume byte for one voice.

We decided to store our song table in memory starting at location $CC00.

The order of the information must be understood. The first three bytes pro

vide the octave/note information for Voices #1, #2, and #3, respectively. The

next byte contains the length/volume information. Table 10-4 is a song table

for Auld Lang Syne. The song program that uses all of the subroutines to play

a song will be described shortly. It terminates when the volume nibble is zero.

A program to load notes in the table will also be described shortly. A rest may

be inserted in the song for any voice by choosing an octave number of eight.

This will halve the frequency until the result is zero, producing no tone.

VI. The Program to Ray a Song

Nowwe must combine the subroutines to play a song. A program to do this

is given in Example 10-11, and what follows is a description of this program.

Line 18 in Example 10-11 prevents interrupts from the operating system while

our song is playing. Lines 19 through 22 set up the starting address of the song

table, $CC00, for the indirect indexed by Yaddressing mode. The (IND),Y address

ing mode was chosen to read the information in the song table because it per

mits us to calculate the address of the location to be accessed. Lines 23 and 24

clear the SID image and the SID itself before starting to play the song.

The loop starting at line 27 and ending with line 34 reads the first three bytes

with the octave/note information from the song table and converts them to

frequencies in the SID image. On line 27, an octave/note byte is read. On line

28, the value of X that identifies the FREQ LO/HI registers is read from the

following table, which must be stored in memory:

$CF18 $00

$CF19 $07

$CF1A $0E
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Y is saved on line 29 because the subroutine that determines the frequency,

called on line 30, modifies the Y register. Y is restored on line 31, and it is in

cremented on line 32 to fetch another octave/note byte if necessary.

All three octave/note bytes have beenread and converted to the appropriate

data in the SID image when Y reaches three. Thus, on line 35, the loop has

ended and the length/volume byte is read from the song table. The PHA in

struction on line 36 saves this data on the stack while the volume nibble is

processed. If the volume nibble is zero, the song ends with the BEQ OUT in

struction on line 38. Otherwise, the volume is stored in the MOD/VOLregister

in the SID image. This takes place on lines 39 and 40. The note begins on line

41 with a subroutine call to GATEON. This subroutine turns on the gates and

transfers the SID image to the SID, starting the note.

Now the length information from the length/volume byte is processed into

a delay on lines 42 through 47. After the delay the gates are turned off, and,

except for the decay phase, the note ends with the subroutine call on line 48

to GATOFF. Now the address accessed with the LDA (IAL),Y instruction

must be updated. Since each note requires four bytes, four must be added

to the two-byte number in IAL and IAL +1. This is accomplished with

subroutine ADD in Example 10-12.

Example 10-11. A Program to Play a Song

Object: Play the song stored in the song table starting at $CC00.

1 *7 r»An *•■ r<\ t-k f\ f\ sfwi
17

18

19

20

21

22

23

24

25

26 UP

27 BR1

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

EQU $CB0 0

SEI

LDA #00

STA +IAL

LDA #$CC

STA +IAL+1

JSR CLEAR

JSR TNSFER

JSR VOICE1

LDY #00

LDA (IAL),Y

LDX VOICE,Y

STY +$FD

JSR FREQ

LDY +$FD

INY

CPY #3

BCC BR1

LDA (IAL),Y

PHA

AND #$0F

BEQ OUT

ORA $CB98

STA $CB98

JSR GATEON

PLA

LSR A

LSR A

LSR A

LSR A

JSR DELAY

JSR GATOFF

JSR ADD

BNE UP

;PREVENT INTERRUPTS.

;SET UP (IND),Y MODE POINTER.

;START AT PAGE BOUNDARY.

;SONG TABLE STARTS IN PAGE $CC.

;CLEAR SID REGISTERS.

;TRANSFER IMAGE TO SID REGISTERS.

;INITIALIZE VOICES.

;Y INDEXES ONE SET OF NOTES.

;GET OCTAVE AND NOTE.

;GET VOICE INDEX.

;SAVE Y FOR A MOMENT.

;SET THE FREQUENCY.

;RESTORE Y.

;INCREMENT Y FOR ANOTHER VOICE.

;ALL THREE VOICES FINISHED?

;NO, SO SET UP ANOTHER VOICE.

;GET DELAY AND VOLUME PARAMETERS.

;SAVE A FOR A MOMENT.

;ISOLATE VOLUME PARAMETER.

;ZERO VOLUME SIGNALS END OF SONG.

;STORE IN MODE/VOLUME REGISTER

;IN SID CHIP.

;TURN ON THE GATES.

;GET DELAY/VOLUME BACK.

SHIFT DELAY INTO LOW NIBBLE.

;SHIFT VOLUME INTO BIT BUCKET

;IN THE SKY.

;WAIT FOR DURATION OF NOTE.

;TURN OFF THE GATES.

;UPDATE (IND),Y POINTER.

;RETURN FOR MORE MUSIC.

CB00

CB00

CB01

CB03

CB05

CB07

CB09

CBOC

CB0F

CB12

CB14

CB16

CB19

CB1B

CB1E

CB20

CB21

CB23

CB25

CB27

CB28

CB2A

CB2C

CB2F

CB3 2

CB35

CB36

CB37

CB38

CB39

CB3A

CB3D

CB40

CB43

78

A9 00

85 FB

A9 CC

85 FC

20 00 CA

20 E0 CA

20 0B CA

A0 00

Bl FB

BE 18 CF

84 FD

20 57 CA

A4 FD

C8

CO 03

90 EF

Bl FB

48

29 OF

F0 19

0D 98 CB

8D 98 CB

20 A0 CA

68

4A

4A

4A

4A

20 7D CA

20 CO CA

20 91 CA

DO CD



198 10DProgramming the 6581 Sound Interface Device

51 OUT

52

53

54

55

PLA

JSR CLEAR

JSR TNSFER

CLI

RTS

;FIX UP THE STACK.

;CLEAR THE SID CHIP.

;TRANSFER IMAGE TO SID.

;ALLOW INTERRUPTS:

CB45

CB46

CB49

CB4C

CB4D

68

20

20

58

60

00 CA

E0 CA

Example 10-12. Subroutine Add

Object: Add four to the two-byte address stored in IAL and IAL f1.

10 ADD

11

12

13

14

15

16

17

CLC

LDA

ADC

STA

LDA

ADC

STA

RTS

#04

+ IAL

+ IAL

+IAL+1

#0

+IAL+1

;CLEAR CARRY FOR ADDITION.

;INCREMENT (IND),Y POINTER
;BY FOUR.

CA91 18

CA92 A9 04

CA94 65 FB

CA96 85 FB

CA98 A5 FC

CA9A 69 00

CA9C 85 FC

CA9E 60

The BNE UP instruction on line 50 forces a branch back to get the next note.

When the song ends, the SID is cleared again with the instructions on lines

52 and 53. Interrupts are enabled again on line 54 and the program returns

to the calling program. The program in Example 10-11 can be executed from

BASIC with a SYS 51968 command.

Try the programby loading it into memory. Be sure to load the three-byte

table mentioned above as well as the table in Table 10-3 and all of the

subroutines, including Example 10-12. Using the program in Example 2-8,

store the codes listed in Table 10-4 for Auld Ling Syne. The starting address

is $CC00. Perform a POKE 2,128 command to set the tempo, then use the SYS

51968 command to start the program. Turn up the volume on your TV set or

monitor, or, better yet, connect the audio output directly to your stereo. How

does it sound?

Table 10-4. Song table for Auld Lang Syne.

40 40 50 4F 35 30 45 6F

35 30 47 2F 35 30 49 4E

39 35 45 4F 37 34 40 6F

35 32 40 2F 37 34 40 4F

39 34 40 4F 35 49 45 6F

35 49 45 2F 39 35 45 4F

20 35 45 4F 22 35 4A CF

22 35 4A 4F 20 35 49 6F

39 35 45 2F 39 35 45 4F

35 49 45 4F 37 34 40 6F

35 32 40 2F 37 34 40 4F

39 34 40 4F 35 32 45 6F

32 49 42 2F 32 4A 5A 4F

30 4A 40 4F 35 49 55 CF

45 35 22 4F 45 35 20 6F.

40 30 39 2F 45 35 39 4F

59 35 69 4F 40 34 37 6F
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Table 10-4. Song table for Auld Lang Syne (continued).

40 32 35 2F 40 34 37 4F

40 34 22 4F 45 35 20 6F

40 30 39 2F 45 35 39 4F

49 30 59 4E 4A 35 32 CF

4A 35 25 4F 49 35 20 6F

45 35 39 2F 45 35 39 4F

59 30 35 4F 40 34 37 6F

40 32 35 2F 40 34 37 4F

41 34 39 2F 41 49 37 2F

42 32 35 6C 45 49 32 2C

5A 4A 32 4D 40 44 30 4F

55 45 35 FF 55 45 35 CO

19

VII. A BASIC Music Interpreter

It is a tedious task to translate music into the information required to store

in the song table. As a small aid, we provide the simple note interpreter listed

in Example 10-13. This program allows you to input the notes and octaves

for all three voices in turn, and then you input the note length and volume,

before getting the data for the next note in the song.

The note input is of the form

? G#,3 RETURN

where ? is the input prompt, and G# represents the note requested in octave

three. There are 12 letter or letter and # sign note possibilities. You mayneed

to be reminded that B flat is the same as A#, if the song has some flats in it.

The lowest octave number is zero and the highest is seven. Most of the notes

in the treble clef are in octave four. An octave number of eight will produce

a rest for that voice.

The length/volume input is of the form

? 8,15 RETURN

where 8 is a half note, and 15 corresponds to the maximumvolume. The input

ends when you enter a volume of zero.

Example 10-13. A Simple BASIC Song Interpreter

5 REM MUSIC INTERPRETER

10 K=0:J=52224

30 FOR 1=1 TO 3

40 PRINT "INPUT VOICE #";I;" NOTE,OCTAVE."

50 INPUT N$,OCT

55 IF OCT=>8 THEN 85

60 OCT=(7-OCT)*16

70 IF N$="C" THEN N=0

71 IF N$="C#" THEN N=l
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72 IF N$="D" THEN N=2

73 IF N$="D#" THEN N=3

74 IF N$="E" THEN N=4

75 IF N$="F" THEN N=5

76 IF N$="F#" THEN N=6

77 IF N$="G" THEN N=7

78 IF N$="G#" THEN N=8

79 IF N$="A" THEN N=9

80 IF N$="A#" THEN N=10

81 IF N$="B" THEN N=ll

85 POKE J+K,OCT+N:PRINT OCT+N:K=K+1

90 NEXT

100 PRINT "INPUT NOTE LENGTH,VOLUME."

110 INPUT L,V

120 Z=(L-1)*16+V

130 POKE (J+K),Z:K=K+1

140 IF V>0 THEN 30

VIII. Summary

The 6581 SID is a three-voice, programmable sound synthesizer. The

waveform, frequency, pulse width, and ADSR envelope parameters of each

voice are controlled by the program. Triangle, ramp, square, and noise

waveforms are available. These voices can be routed through a filter that can

be programmed to be a low-pass, high-pass, or band-pass filter, with a pro

grammable cut-off frequency.

The frequency of each voice covers an eight-octave range. A look-up table

provides a convenient way to select the frequency corresponding to a par

ticular note. If the frequencies of the 12 notes in the highest octave are stored

in the table, then a divide-by-two routine may be used to generate the fre

quencies of the notes in lower octaves.

To play a song, each voice must be initialized, the filter must be pro

grammed, and, as the song is played, the frequencies and durations of the

notes are read from a song table. A useful technique for writing a program

as lengthy as the one required to play a song is to divide the program into

modules to be called as subroutines. This makes each module easy to under

stand, and it is possible to focus on one programming problem at a time.

Although the focus of this chapter was a single program to play a song, it

is possible to generate many complex sounds for arcade-type video games

with the 6581 SID.

IX. Exercises

We assume that you have successfully loaded and executed the machine-

language routines in this chapter. The purpose of the exercises is.to explore

some of the other options offered by the SID.

1. The attack/decay, sustain/release parameters maybe modified in our program

by POKEing new numbers into the following memory locations: 51729,51734,

51744,51749,51759, and 51764. These locations hold the operands of some of

the LDA instructions in Example 10-3. POKE the number 12 into each one of
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these locations. Describe what kind of ADSR envelope you expect with this

parameter. Run the program and listen to the song. Adjust the tempo so the

notes have time to release/decay to a low volume. Later you may wish to ex

periment with numbers other than 12; for now, proceed to the next exercise.

2. The numbers stored in the control registers may be modified by POKEing

numbers into these three locations: 51724,51739, and 51754. POKE 32 in each

of these locations, then play the song. Now each voice has the same ramp

waveform. Is the sound that results more like a guitar or a piano?

3. Repeat Exercise 2, with each voice playing a triangular waveform. What

number must you POKE into the locations given in Exercise 2 to do this?

Characterize the sound after playing the song.

4. Repeat Exercise 2 after POKEing 20 into each of the locations specified in Ex

ercise 2. This activates the ring modulator, and the sounds you perceive when

you play the song will have some bell-like characteristics.

5. Repeat Exercise 2, but POKE 18 into the locations mentioned there. Nowyou

will set the SYNC bit in each control register. Play the song.

6. Some of the most interesting effects are producedby generating noise instead

of one of the other waveforms. Repeat Exercise 2, butPOKE 128 into the loca

tions mentioned. Play the song. Do you think you can synthesize a gun shot?

7. Play Voice #3 by itself and then modify the pulse width to observe the effect

of pulse width on the sound. A voice may be quieted by POKEing zero into

the location given in Exercise 2. The pulse width may be modified by POKE

ing various numbers into location 51774 and then playing the song.

8. Experiment with the filter settings by modifying the program. Try band-pass,

low-pass, and high-pass filters with various cut-off frequencies.





11
Applications Using the

6567 Video Interface Chip

I. Introduction

The purpose of this chapter is to describe some of the many video display

options that can be programmed with the use of the 6567 VIC (video inter

face chip), usually called the VIC II. The VIC is responsible for all of the video

display operations on the Commodore 64. In certain modes, such as the bit

mapped mode, the video display uses large amounts of memory, so we will

discuss some memory-management techniques when the need arises.

The VIC chip has 46 registers, which begins to suggest its complexity.

Movable object blocks, otherwise known as sprites, bit-mapped color

graphics, multiple character sets, and screen switching are just a few of the

video display capabilities that can be programmed. Space does not permit

a complete description of all its capabilities; therefore, we will concentrate on

a few applications and attempt to make these discussions as useful and com

plete as possible. Consult the Programmer's Reference Guide for a more elaborate

description of the 6567 VIC.

II. 6567 VIC Programming Fundamentals

A Bank switching the VIC

The main purpose of the VIC is to map codes from R/W memory into video

information that appears on the video monitor or TV. The VIC accesses some

of the same memory as the 6510 microprocessor in order to display informa

tion that the processor stores. One of the four 16K blocks of memory in the

64K memory space of the 6510 microprocessor is used, in part, for video

display purposes. The 16K bank of memory that the VIC uses to get its infor

mation is programmable. Bits zero and one of PortA in the 6526 CIA #2 control

203
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which 16Kbank of memory the VIC uses for video information. The address

of this port is $DD00, and its data direction register (DDR) is located at $DD02.

(I/O ports andDDRs will be discussed in more detail in the next chapter.) Refer

to Table 11-1 to find the information necessary to select the 16Kmemorybank

that the VIC uses. When power is first applied, the microcomputer system

is configured so that the VIC looks at the lowest 16K bank of memory for its

information.

Table 11-1. Bank control codes for the VIC.

16KMemory Bank

$0000-$3FFF*

$4000-$7FFF
$8000-$BFFF

$C000-$FFFF

PortA

Bitl

1

1

0

0

{Data

BitO

1

0

1

0

Banki

0

1

2

3

Base Address

(Decimal) (Hex)

0

16384

32768

49152

iiii
ORA#

$03

$02

$01

$00

*Normal or default value.

The following program segment will select the bank of memory that you

want the VIC to use. The operand of the second ORAinstruction is zero, one,

two, or three, depending on whether bank number three, two, one, or zero,

respectively, is selected. Refer to the last column of Table 11-1 to find the cor

rect operand of the ORA instruction.

LDA #03 ;Configure the DDR so bits zero

ORA $DD02 ;and one are output bits.

STA $DD02

LDA #$FC ;Mask bits zero and one.

AND $DD00

ORA #$01 ; Select bank ft 2, $8000 - $BFFF.

STA $DD00

B. Screen memory

How is text displayed on the video monitor? First note that the text screen

consists of 25 rows and 40 columns, giving a total of 1,000 screen locations.

There is a one-to-one correspondence between these 1,000 locations on the

screen and 1,000 locations inR/Wmemory. This block of memory is called screen

memory.

The first 40 locations in screen memory are mapped by the VIC into

characters in the top row on the screen. The second 40 locations in screen

memory correspond to the secondrow on the screen, and so on, until all 1,000

memory locations are mapped onto the screen.

Each screen memory location holds a screen character code, also called a screen

code. Writing a certain screen character code to a specific memory location in

screen memory will cause the corresponding character to appear on the screen.

The screen codes are not the same as ASCII. The screen character codes are listed

in Appendix E of the Commodore 64 User's Guide that came with your computer.
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Our principal question is: where is screen memory? Table 11-2 describes

the location of screen memory relative to the lowest address, the base address,

of the 16K memory bank being used by the VIC (Table 11-1). The location of

screen memory is determined by the number in the most-significant nibble

of the VIC memory pointer register at $D018. Remember that you must add

the address in Table 11-2 to the base address in Table 11-1 to find the actual

address of screen memory.

Table 11-2 . Location of screen memory.

Starting Address

(Hex)

$0000

$0400

$0800

$0C00

$1000

$1400

$1800

$1COO

$2000

$2400

$2800

$2C00

$3000

$3400

$3800

$3C00

(Decimal)

0

1024*

2048

3072

4096

5120

6144

7168

8192

9216

10240

11264

12288

13312

14336

15360

Most-Significant Nibble

(Location $D018)

$0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

ORA4

$00

10

20

30

40

50

60

70

80

90

A0

B0

CO

DO

E0

F0

/"Default value.

Here is an assembly-language program segment that selects the location

you wish to use for screen memory without affecting the other bits in the VIC

control register at $D018:

LDA #$0F ;Mask the most-significant nibble.

AND $D018 .

0RA #$10 ;Choose screen memory number $10,

STA $D018 ;putting screen memory at $0400.

In this program segment, wehave chosen the address $0400 to add to the base

address of the bank to identify the screen memory address. The operand of

the ORA instruction is found in the last column of Table 11-2. Recall that in

the previous program segment, we selected $8000 as the base address of the

bank, so screen memory is at $8000 + $0400 = $8400.

It should be obvious that you can set up 16 different screens of text infor

mation and switch from one to the other very quickly. Of course, on the Com

modore 64, text information is not confined to letters and numbers. Any of

the graphics characters on the keyboard can be stored in screen memory. It
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maybe worth pointing out that the Commodore 64 operating system assumes

that screen memory starts at $0400, and if you switch it to another part of

memory you will get garbage on the screen.

You will see that screen memory has a different function when performing

bit-mapped graphics. When the bit-mapped mode is used, each location in

screen memory corresponds to a location on the screen, but the screen

memory location does not contain a code for the character. Instead, the two

nibbles of a screen memory location contain two color codes, one for "on"

picture elements and the other for "off" picture elements. More about this

later.

A program to clear screen memory was given in Example 8-4.

C Color memory

Corresponding to the bank of memory known as screen memory is a bank

of 1,000 memory locations known as color memory. The location of color

memory is fixed; it always occupies locations $D800 through $DBE7. The color

of the character is determinedby its corresponding color code. Thus, if screen

memory starts at $0400, the color code of the character whose screen code is

stored at $0400 is stored in color memory at $D800. The 16 possible colors and

their corresponding codes are given in Table 11-3.

Table 11-3. Color codes.

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Light red

Dark gray

Medium gray

Light green

Light blue

Light gray

Color Code

$0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

A program to store color codes in color memorywas given in Example 8-12.

Of course, if the characters are to be visible, they must differ in color from
the background.
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j one of the 16 color codes in Table
11-3 in the VICs background color register at $D021.

• The border, or exterior color, is determined by storing one of the color codes
in the VICs exterior color register at $D020.

D. Character memory

Each of the 1,000 locations on the screen consists of a rectangular dot matrix

consisting of 64 dots, 8 dots wide and 8 dots high. Each dot is representedby
a bit in a certain memory location.

• If the bit is one, then the dot on the screen will have the same color as the color
specified for that character in color memory.

• If the bit is zero, then the dot on the screen will have the same color as the color.
specified in the background color register.

A dot is actually called a picture element, or pixel for short. Each character is

represented in memoryby 64 bits, called the character pattern. One character
can appear in each of the 1,000 screen locations.

Some simple arithmetic shows that eight bytes of memory are needed to

specify the on/off information for the 64 pixels required to display one

character. Thus, eight bytes of memory are needed to store one character pat

tern. Each screen code is an eight-bit number, thus there are 256 possible

screen codes representing 256 possible character patterns. Since each character

pattern requires eight bytes of memory, we need 8*256 = 2048 memory loca

tions to store 256 unique character patterns. The 2K bank of memory loca

tions required to store 256 character patterns is called character memory.

The location of character memory within the 16Kbank of memory that the

VIC is using is controlledby bits one, two, andthree in the VIC register located

at $D018 (refer to Table 11-4). A program segment to accomplish the selec

tion of the character memory bank follows:

IDA #$F1 ;Mask bits one, two, and three.

AND $D018

0RA #$04 ;$1000 will start character memory.

STA $D018

The operand of the ORA instruction is found in Table 11-4. Since an earlier

program segment selected $8000 as the base address of the 16K bank used

by the VIC, both program segments make $9000 as the base address of

character memory. The character patterns must start at location $9000, and

extend upward in memory in groups of 64 bytes for each character pattern.

Here is how the VIC places a character on the screen. It looks in a screen

memory location for the screen code. It also looks in color memory to find the

color of the character. The screen code is multiplied by eight and added to

the base address of character memory. The character pattern is fetched from

character memory, and the pattern is displayed onthe screen. The eight comes

from the fact that eight bytes are devoted to each character code. Of course,
the base address of character memory is determined by bits one, two, and
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three in $D018 (see Table 11-4) and the base address of the bank (see Table

11-1) being used by the VIC. This all takes place inside the VIC: the

microprocessor has nothing to do with it.

Table 11-4. Location of

Starting Address

(Hex)

$0000

$0800

$1000

$1800

$2000

$2800

$3000

$3800

(Decimal)

0

2048

4096*

6144

8192

10240

12288

14336

the 2K character memory bank.

Register $D018 Bit Values

Bit 3

0

0

0

0

1

1

1

1

Bit 2

0

0

1

1

0

0

1

1

Bitl

0

1

0

1

0

1

0

1

ORA#

$00

$02

$04

$06

$08

$0A

$0C

$0E

*Default value.

£ Character ROM

If the VIC fetches character patterns fromR/W memory, then the character

patterns are lost each time the power is removed. Since the operating system

requires characters to display on the screen when power is first supplied to

the Commodore 64, it is desirable to have character patterns stored in ROM

rather than R/W memory. With some hardware tricks, the Commodore 64

system does just that. When either bank zero or bank two is selected for the

VIC and character memory is selected to be at $1000, the VIC actually looks

at ROM locations $D000 through $D7FF. Likewise, if character memory is

selected to be at $1800, the VIC actually looks atROMlocations $D800 through

$DFFF. The first character set is the uppercase/graphics set, the second is the

upper/lowercase set.

Once again, this works only if banks zero or two are selected for the VIC

to use. It is all accomplished in hardware; you do not have to worry about

it. Moreover, in this case you can have your own information or programs

stored in character memory. It will not be disturbed and it will not affect what

you see on the screen. If you want to generate your own character patterns,

a procedure thoroughly described in the Programmer's Reference Guide, you

must choose either banks one or three for the VIC, or you must choose a start

ing address for character memory that is different from the ones just described.

F. A demonstration program

It is time to provide a programming example that will demonstrate the con

cepts just described. The instructions in our program will be sequenced, as

closely as possible, with the topics we have discussed so far. The program

is listed in Example 11-1. It displays most of the characters in the Commodore



II. 6567 VIC Programming Fundamentals 209

character ROM, using all of the possible colors. Its purpose is simply to illus

trate the assembly-language programming involved in accomplishing the

tasks described in the previous paragraphs. Each program segment is

delineated by spaces and a comment that describes its function. Study the

program as you review the topics we have just presented.

Example 11-1. A Program to Demonstrate Some of the Video

Display Options of the VIC

Object: Use locations $8000 through $BFFF for the VIC. Start screen memory

at $8400 and character memory at $9000. Fill the screen with a variety ofROM

characters in a variety of colors.

10

11

12

. 13

14

15

16

17
1 Qlo

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

52

53

54

55

56

57

58

;VIC BANK SELECT ROUTINE.

LDA #03

ORA $DD02

STA $D002

LDA #$FC

AND $DD00

ORA #$01

STA $DD00

;MAKE BITS 0 AND 1 OF PORT A

;OUTPUT BITS.

;MASK BITS 0 AND 1.

?SELECT BANK #2, $8000 - $BFFF.

;STORE IN PORT A OF CIA #2.

;SELECT LOCATIONS FOR SCREEN MEMORY.

LDA #$0F

AND $D018

ORA #$10

STA $D018
.

;MASK MOST SIGNIFICANT NIBBLE.

;$D018 IS REGISTER $18 IN THE VIC.

;PUT SCREEN MEMORY AT $8400.

;FILL SCREEN MEMORY WITH SCREEN CODES.

LDX #250

LOOP1 DEX

TXA

STA SCN,X

STA SCN+250,X

STA SCN+500,X

STA SCN+'750,X

BNE LOOP1

•FILL COLOR MEMORY

LDX #250

LOOP2 TXA

AND #$0F

DEX.

STA CLR,X

GTA CLR+250,X

STA CLR+500,X

STA CLR+750,X

BNE LOOP2

;CHOOSE BACKGROUND

LDA #$0F

STA $D021

LDA #$02

STA $D020

;SET UP SCREEN MEMORY TO

;DISPLAY THE CHARACTER SET.

;PUT CODES IN ALL 1000 LOCATIONS.

WITH COLOR CODES.

;SET UP COLOR MEMORY FOR A

?FOR A VARIETY OF COLORS.

?STORE COLOR CODES IN

;1000 COLOR MEMORY LOCATIONS.

AND EXTERIOR COLORS.

;CHOOSE LT. GRAY FOR THE

BACKGROUND COLOR.

;CHOOSE RED FOR THE

;BORDER COLOR.

;SELECT LOCATION FOR CHARACTER MEMORY.

LDA #$F1

AND $D018

ORA #$04

STA $D018

here' jmp here

;MASK BITS 1, 2, AND 3.

;PUT CHARACTER MEMORY AT $9000.

;LOOP HERE FOREVER.

cooo

C002

C005

C008

C00A

C00D

C00F

C012

C014

C017

C019

C01C

C01E

C01F

C020

C023

C026

C029

C02C

C02E

C030

C031

C033

C034

C037

C03A

C03D

C040

C042

C044

C047

CO 4 9

C04C

C04E

C051

C053

C056

A9

0D

8D

A9

2D

09

8D

A9

2D

09

8D

A2

CA

8A

9D

9D

9D

9D

DO

A2

8A

29

CA

9D

9D

9D

9D

DO

A9

8D

A9

8D

A9

2D

09

8D

4C

03

02

02

FC

00

01

00

OF

18

10

18

FA

00

FA

F4

EE

F0

FA

OF

00

FA

F4

EE

EE

OF

21

02

20

Fl

18

04

18

56

DD

DO

DD

DD

DO

DO

84

84

85

86

D8

D8

D9

DA

DO

DO

DO

DO

CO
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III. Bit-Mapped Graphics

The focus of this section will be a set of subroutines that can be called either

from BASIC or machine-language programs and that give the Commodore

64 the capability of doing bit-mapped graphics.

A Fundamentals of the bit-mapped graphics mode

Now that we have learned how to program the 6567 VIC to display

characters, we move to another VIC display option, bit-mapped graphics. In

the character display mode, each of the 1,000 eight-by-eight dot matrices displays

one character on the screen. In the bit-mapped mode, we are not necessarily in

terested in making characters that are confined to an eight-by-eight dot matrix:

we want to control individual dots to create any desired shape of any desired

size.

Recall that each rectangular dot matrix has 64 pixels that are mapped from

64 bits occupying eight bytes of memory. Thus, eight bytes are mapped into

one dot matrix. Since there are 1,000 eight-by-eight dot matrices on the screen,

there are 64,000 picture elements, and 64,000 bits of memory will be required

to store the information to be displayed on the screen. Since there are eight

bits in a byte, 8,000 bytes of memory are required to store the screen infor

mation. (8,000 bytes is approximately 8K bytes of memory.)

The 8Kblock of memory that stores the information mapped onto the screen

will be called bit-mapped memory. Bit-mapped memory starts at the same loca

tion as character memory, defined in the previous section (see Table 11-4).

It is important to start character memory so that it provides 8K of memory

in the 16Kbank used by the VIC. Referring to Table 11-4, this means that the

starting address can be no larger than $2000.

Since there are 40 columns and 25 rows of rectangular dot matrices on the

screen, the bit-mapped memory screen consists of a rectangular array of 40*8

= 320 dots by 25*8 = 200 dots. The description "320-by-200 pixels" defines

the resolution that is available on the Commodore 64 in its bit-mapped graphics

mode.

B. Preparing for bit-mapped graphics

The VIC goes into the bit-mapped mode when bit five of register $11 is set.

The address of this register is $D011. One step in our initialization sequence

of instructions will require us to set this bit. The next step is to decide which

16Kbank to use for the VIC. Let us choose the bankfrom $8000 to $BFEF, since

this will introduce some interesting features of the Commodore 64 system.

Now we must decide where to put the bit-mapped memory within this

bank. Let us use the top 8K block of memory in this bank for bit-mapped
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memory. Refer to Table 11-4 and observe that we must choose $2000 as the

starting address to use the top 8K of the 16Kbank $8000 to $BFFF. Thus, bit

mapped memory will extend from $A000 to $BFFF.

This block of memory, $A000 to $BFFF, is also occupied by the BASIC in

terpreter in ROM. In a moment we will describe the memory-management

techniques required to switch out the BASIC ROM and switch in the R/W

memory "underneath" the ROM. For now, it will be sufficient to realize that

it is possible to write information to the R/Wmemoryunderneath the BASIC

ROM without switching out the ROM.

We are now ready to produce two of the subroutines that we will use to

produce bit-mapped graphics. The first subroutine is given in Example 11-2.

This subroutine selects the memorybank to be used by the VIC. It places the

bit-mapped memory at $8000 + $2000 = $A000, and it sets the bit-mapped

mode, bit five in register $D011.

Example 11-2. Bit-Mapped Graphics Initialization Subroutine

Object: Make the VIC use the memory space from $8000 to $BFFF. Put screen

memory at $0400 and character memory (bit-mapped memory) at $2000. Set

the BMM (bit-mapped mode) bit in VIC register $11.

10 MEMSET

11

12

13

14

15

16

17

18

19

20

21

22

LDA

ORA

STA

LDA

AND

ORA

STA

LDA

STA

LDA

ORA

STA

RTS

#$03

$DD02

$DD0 2

#$FC

$DD00

#$01

$DD00

#$18

$D018

#$20.

$D011

$D011

;MAKE BITS ZERO AND ONE

;OUTPUT BITS.

;MASK BITS ZERO AND ONE.

;SELECT VIC MEMORY BANK FROM

;$8000 TO $BFFF.

;RESULT INTO PORT A OF CIA #2.

;PUT SCREEN MEMORY AT $0400,

;BIT MAP AT $2000 + $8000.

;SET BIT FIVE IN REGISTER $11

;TO GET BIT MAPPED MODE.

;RETURN FROM MEMORY INITIALIZATION.

C800

C802

C805

C808

C80A

C80D

C80F

C812

C814

C817

C819

C81C

C81F

A9

0D

8D

A9

2D

09

8D

A9

8D

A9

0D

8D

60

03

02

02

FC

00

01

00

18

18

20

11

11

DD

DD

DD

DD

DO

DO

DO

The next routine clears the bit-mapped memory locations in order to start

with a blank screen. Since we decided to use the 16K bank of memory from

$8000 to $BFFF for the VIC, and since we set character memory at $2000, the

bit-mapped memory extends from $A000 to $BFFF. The subroutine in Exam

ple 11-3 uses the (IND),Y addressing mode to clear this 8K block of memory.

In the bit-mapped mode, the colors of the pixels come from screen memory.

The color of the pixels in each of the 1,000 rectangular dot matrices on the

screen is determined by the codes in the 1,000 screen memory locations as

follows:

• If the bit corresponding to a pixel is one, then the color of the pixel is determined

by the color code in the most-significant nibble.

• If the bit corresponding to a pixel is zero, then the color of the pixel is deter

mined by the color code in the least-significant nibble.

Thus, each byte of screen memory is used to control the colors in a 64-dot

matrix on the screen.



212 11 □Applications Using the 6567 Video Interface Chip

Example 11-3. Clear Screen Subroutine

Object: Clear the bit-mapped memory locations $A000 to $BFFF.

10 CLEAR

11

12

13

14

15

16 LOOP

17

18

19

20

21

22

LDA

STA

LDX

LDA

STA

TAY

STA

INY

BNE

INC

CPX

BCS

RTS

#$A0

+$FB+1

#$BF

#00

+ $FB

($FB),Y

LOOP

+$FB+1

+$FB+1

LOOP

;SET UP (IND),Y MODE POINTERS

;TO POINT TO THE BASE OF THE

;BIT MAPPED MEMORY BANK.

;ALL LOCATIONS WILL BE CLEARED.

;ADL=($FB)+Y. ADH=($FB+1).

;NEXT Y.

;IF YO0 THEN GO TO LOOP.

;INCREMENT PAGE NUMBER.

;IS X<($FB+1)? YES, C=0. NO, C=l.

;NO, CLEAR ANOTHER PAGE.

C820

C822

C824

C826

C828

C82A

C82B

C82D

C82E

C830

C832

C834

C836

A9

85-

A2

A9

85

A8

91

C8

DO

E6

E4

BO

60

A0

FC

BF

00

FB

FB

FB

FC

FC

F5

To keep things simple, our subroutine uses only one color for the

background, corresponding to the bits that are zero, and one other color for

the bits that are one. These colors are determined by the two nibble-length

codes stored in location $0002. The color codes are described in Table 11-3.

The subroutine is given in Example 11-4.

Example 11-4. Subroutine to Determine the Colors

Object: Get the two color nibbles from location $0002 and store them in

screen memory for the bit-mapped mode.

C840 A2 FA

;GET COLOR CODES FROM $0002. C842 A5 02

C844 CA

;STORE COLORS IN SCREEN MEMORY. C845 9D 00 84

C848 9D FA 84

C84B 9D F4 85

C84E 9D EE 86

C851 DO Fl

C853 60

To test these three routines, we suggest that you execute them one at a time

from BASIC. After the three subroutines are loaded, use these commands:

SYS 51200

SYS 51232

SYS 51264

Notice the effect on the screen after each command is executed. The last two

commands must be executed "in the dark," as you will see.

C Calculating the location of a pixel's bit

Each of the 64,000 bits in the bit-mapped memory turns on (or off) one

of the 64,000 pixels. The most convenient way of identifying a pixel is with

a pair of coordinates, x and y. (We will use lowercase letters for the x- and

10 SETCLR

11

12 MORE

13

14

15

16

17

18

LDX

LDA

DEX

STA

STA

STA

STA

BNE

RTS

#250

+ $02

SCN,X

SCN+250

SCN+500

SCN+750

MORE

,x

,x

,x
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y-coordinates to distinguish them from the X and Y registers that will also

appear in this discussion.) Let (x,y) be the position of a pixel. Since the screen

has 320 pixels across and 200 pixels down, x and y are bounded as follows:

0 < = x < = 319

0 <= y <= 200

The pixel in the upper left-hand corner of the screen is identified with the coor

dinate pair (0,0). The coordinate x increases to the right, while the coordinate

y increases downward (refer to Figure 11-1).

(0,0) X (319,0)

(0,199) (319*199)
Figure 11-1. Diagram of the bit-mapped screen.

Here are two questions we must answer in order to do bit-mapped graphics.

Given the pixel identified by (x,y), what is the address of the memory loca

tion of the bit that turns on this pixel? Which of the eight bits in that memory

location is the one that corresponds to the pixel?

To answer these questions, we mustknowhowbit-mapped memorymaps

into pixels. This is described in Table 11-5. The first byte in bit-mapped

memory, identified by "BYTE 0" in Table 11-5, controls the eight pixels in

the upper left-hand corner of the screen. The actual address of the byte is

foundby adding the byte number to the base address ofbit-mapped memory,

namely, $A000. Bit seven of BYTE 0 controls the pixel at (0,0), bit six controls

the pixel at (1,0), and so on, until we find that bit zero controls the pixel at (7,0).

BYTE 8 controls the pixels whose y-coordinates are zero and whose x-

coordinates fall between 8 and 15. Thus, any byte in bit-mapped memory

maps into a set of eight horizontal pixels. If the coordinate of the left-most pixel

in this set is x, then refer to Figure 11-2 and observe that the coordinates of

the other seven pixels are

x + l,x + 2, ...,x + 7

Notice that once a byte is identified, a numberfrom zero to seven identifies

a bit number. This is diagrammed in Figure 11-2. Thus, if x were represented

by a binary number, the three least-significant bits of x, which represent a

numberfrom zero to seven, canbe used to identify the bit number correspond

ing to a pixel. The formula for the bit number n is
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n = 7-(xAND7)

where x is the coordinate of the pixel. The AND in the formula is the logical

AND described in Chapter 5.

Table 11-5. Memory map for the bit-mapped screen.

0-7 8-15 16-23

COLUMN COLUMN COLUMN

#0 #1 #2

312-319

COLUMN

#39

y

0

i

BYTEO

BYTE1

BYTE 8

BYTE 9

BYTE 16

BYTE 17

#

. . . BYTE 312

. . . BYTE 313

•

•

B

L

0

C

K

BYTE 7 BYTE BYTE 23 BYTE 319 0

8

9

•

15

BYTE 320 BYTE 328 BYTE 336

BYTE 321 BYTE 329 BYTE 337

BYTE 327 BYTE 335 BYTE

BYTE 632

BYTE 633

BYTE 639

B

L

0

C

K

192 BYTE 7680 BYTE 7688 BYTE 7696

193 BYTE 7681 BYTE 7689 BYTE 7697

199 BYTE 7687 BYTE 7695 BYTE 7703

BYTE7992 B

L

BYTE 7993 0

C

K

#

BYTE 7999 2

4



III. Bit-Mapped Graphics 275

X + 1 X + 2 X + 3 X + 4 X + 5 X + 6 X + 7 -

TTTTTTfT
• PIXEL COORDINATE

- PIXEL POSITION

ON THE SCREEN

A BYTE IN BIT

MAPPED MEMOPY—*• 7 6 5 4 3 2 1 0

BIT NUMBERS

Figure 11-2. The relationship of bit numbers in a byte of bit-mapped memory

to the coordinate of a pixel on the screen.

Now that we know how to identify the bit number within a byte by its x-

coordinate, let us return to the problem of identifying the byte number. Refer

again to Table 11-5. The 320 pixels across the top of the screen are mapped

from bytes

0,8,16, ...,312

The 320 pixels in the next row, corresponding to y = 1, are mappedfrombytes

1,9,17, ...,313

The first eight rows of pixels come from the block of memory with byte

numbers 0 to 319. The next eight rows of pixels come from the next 320 bytes,

numbered 320 to 639, and so on, until the bottom eight rows of pixels are

mapped from the last 320 bytes in bit-mapped memory, with byte numbers

7,680 to 7,999.

Thus, bit-mapped memory can be divided into 25 blocks of memory, each

containing 320 bytes and each controlling eight horizontal rows of pixels. This

is illustrated in Table 11-5. Every eighth y value starts a newblock of 320 bytes.

Thus, the byte number of the first byte in any block is given by

320*(INT(y/8))

where y is the y-coordinate of the pixel. The INT function simply means that

any remainder from the division is disregarded.

Suppose that x is between zero and seven, in other words, the byte falls

in Column #0 in Table 11-5. Then the byte number within a block is determined

by adding the number represented by the three least-significant bits of y to

the byte number of the first byte in the block.

Thus, the pixel at (0,7) is in the byte whose byte number is 0 + 7. Consider

the pixel at (5,9). The INT(9/8) = 1, so the byte that controls this pixel is in
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Block #1, which begins at 320. Dropping all but the three least-significant bits

of nine leaves a one. Thus, the byte number of this pixel is 320 4- 1, or 321.

Refer to Table 11-5 to make sure this is correct. In other words, to determine

the byte number for the columns of pixels from x = 0 to x = 7, we must add

yAND7

to the byte number of the beginning of the block.

What if x is a number from 8 to 15? Every eighth x begins a new column of

bytes. The next column of bytes in Table 11-5 has byte numbers that are eight

more than the byte numbers in the first column of bytes, provided the ver

tical position, y, is unchanged. Thus, for these values of x, we must not only

add (y AND 7) but we must also add eight. If x is a number from 16 to 23, we
must add 16 to the byte number found in the first column. If x is a number

from 24 to 31, we must add 24 to the byte number found in the first column,

and so on. Thus, the x-coordinate is also involved in finding the byte number.

In fact, from the pattern

8,16,24,...

that develops, you can see that we must add the quantity

8*(INT(x/8))

to the quantity (y AND 7) and the byte number, 320*(INT(y/8)), of the begin

ning of the block to get the byte number for any x and y. Thus, the byte number

is given by the expression

320*(INT(y/8)) + (y AND 7) + 8*(INT(x/8))

The address, ADH:ADL, of this byte is found by adding the base address of

bit-mapped memory. Thus, ADH:ADL for any byte in the bit-mapped

memory is given in terms of the x- and y-coordinates by the expression

ADHrADL = $A000 + $140*(INT(y/8)) + (yAND$7) + $8*(INT(x/8))

where we have made use of the fact that 320 = $140.

This finishes our calculation of the address of any byte in the bit-mapped

memory corresponding to any point (x,y) on the screen. It is unfortunate that

this is such a complex procedure, but that seems to be a characteristic of bit

mapped graphics. We will now relate our calculation to the assembly-language

instructions required to address the appropriate byte in the bit mapped

memory, given any x and y.

Recall from our discussion of the (IND),Y addressing mode in Chapter 8 that

ADH:ADL = BAH:BAL + Y

whereBAH andBAL are eight-bit numbers stored in zero page locations sym

bolized by IAL and IAL+1, and IAL is the operand of the instruction using

this addressing mode. In other words, to identify the address of the operand

in the bit-mapped memory, we must have numbers for BAH, BAL, and Y cor

responding to any point (x,y). That is, we must set

BAH:BAL + Y = $A000 + $140*INT(y/8) + (y AND 7) + 8*INT(x/8)
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Since y is between zero and 199, it can be represented by an eight-bit

number. It will take two bytes to represent x, since x can be as large as 319,

and the largest eight-bit number is 255. Let XLO symbolize the location that

contains the eight least-significant bits of x, and let XHI symbolize the loca

tion that contains the most-significant bits of x.

Observe that (y AND 7) produces a three-bit number. Observe also that

8*INT(x/8) is equivalent to dividing by eight, discarding the remainder, and then

multiplying by eight. Dividing by eight is equivalent to three shifts right.

Multiplyingby eight is equivalent to three shifts left. The net effect of these shifts

is to clear the three least-significant bits in XLO, an operation that can also be

accomplished by ANDing the number in XLO with $F8. Since the number (y

AND $7) occupies only three bits, it can be combined with the number (XLO

AND $F8) to form a single eight-bit number. In our program, we shall let

Y = (XLO AND $F8) + (y AND $7)

Since the two numbers in parentheses occupy different bits, we can more

easily combine them with an ORA instruction rather than the " + " operation.

With this agreement, we are left with

BAH:BAL = $A000 + $140*(INT(y/8)) + (XHI)

where (XHI) means "the number in XHI." We need to separate this equa

tion into two equations, one involvingBAH and the other BAL. It should be

clear that $A0 and (XHI) go into BAH.

Since

$140*(INT(y/8)) = ($100 + $40)*(INT(y/8))

then

$140*(INT(y/8)) = $100*(INT(y/8)) +$40*(INT(y/8))

Multiplication by $100 is the same as multiplication by 256, which is equivalent

to eight shifts left. In other words, multiplication by $100 shifts (INT(y/8) from

a low byte to a high byte, where it becomes part of BAH.

So far we have

BAH = $A0 + INT(y/8) + (XHI)

leaving

BAL = $40*(INT(y/8))

but $40*(INT(y/8)) may not be able to be contained in BAL. In that case, we

will have to add its most-significant byte to the expression for BAH given

above. We begin by calculating BAL.

Since $40 = $8*$8, we may write

BAL = $8*($8*(INT(y/8)))

Earlier we pointed out that dividing by eight, discarding the remainder,

and multiplying by eight is equivalent to ANDing with $F8. Thus, the

previous formula reduces to

BAL = $8*(yAND$F8)
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To calculate BAL, we begin by ANDing y with $F8. Then we multiply by

$8 with a succession of three shifts left. This may move part of the result into

a more significant byte. The low byte of this result becomes BAL. The high

byte of this result is added to the sum

$A0 + INT(y/8) + (XHI)

to give BAH, finishing the calculation.

The subroutine to perform the calculation of Y, BAL, and BAH is given in

Example 11-5. Its function is to set up the memory locations IAL and IAL+1

and the Y index register with the correct numbers, given the position (x,y)

of a pixel. If you have understood the previous discussion, you should have

no difficulty with the program since the function of each block is clearly iden
tified and the calculation proceeds exactly as we have outlined above. The

location symbolized by XPOS holds the least-significant byte of x, while

XPOS+ 1 holds the most-significant byte of x. The y-coordinate is in the

memory location symbolized by YPOS. Study this subroutine as you review

the calculations we have described.

Example 11-5. Subroutine to Calculate ADH:ADL from (x,y)

Object: Load IAL, IAL+1, and Y with the numbers to identify the byte in

bit-mapped memory that controls the pixel at (x,y).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

; CALCULATE Y FOR

ADHADL LDA

AND

STA

LDA

AND

ORA

TAY

#$F8

+XPOS

+TEMP

+YPOS

#07

+TEMP

'; CALCULATE BAL FOR
LDA

STA

LDA

AND

ASL

ROL

ASL

ROL

ASL

ROL

STA

;

#00

+IAL+1

#$F8

+YPOS

A

+IAL+1

A

+IAL+1

A

+IAL+1

+ IAL

;CALCULATE BAH FOR

LDA

LSR

LSR

LSR

CLC

ADC

ADC

ADC

STA

RTS

+YPOS

A

A

A

+XPOS+1

#$A0

+IAL+1

+IAL+1

(IND),Y ADDRESSING MODE.

;CLEAR BITS 0, 1, AND 2 OF X.

;ISOLATE THREE LOW BITS OF Y.

;COMBINE WITH PREVIOUS RESULT.

;PUT IN Y REGISTER FOR (IND),Y MODE.

(IND),Y ADDRESSING MODE.

;CLEAR IAL+1 LOCATION.

;DROP LOW THREE BITS OF Y.

•MULTIPLY BY 8 WITH THREE

;SHIFTS AND ROTATES.

;CALCULATION OF BAL IS COMPLETE.

(IND),Y ADDRESSING MODE.

;DIVIDE BY 8 WITH 3 SHIFTS LEFT.

;ADD HIGH BYTE OF X.

;ADD BASE ADDRESS OF HIRES SCREEN.

;ADD PREVIOUS RESULT.

;CALCULATION OF BAH IS COMPLETE.

C860

C862

C864

C866

C868

C86A

C86C

C86D

C86F

C871

C873

C875

C876

C878

C879

C87B

C87C

C87E

C880

C882

C883

C884

C885

C886

C888

C88A

C88C

C88E

A9

25

85

A5

29

05

A8

A9

85

A9

25

0A

26

0A

26

0A

26

85

A5

4A

4A

4A

18

65

69

65

85

60

F8

FD

02

FF

07

02

00

FC

F8

FF

FC

FC

FC

FB

FF

FE

A0

FC

FC
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D. Switching out the ROM

Recall that we have placed bit-mappedmemory in the same location as the

BASIC interpreter in ROM. There is no problem with the 6510 writing to the

R/W memory that occupies this 8K block of memory, but when it attempts

to read codes from this part of memory it will read the codes inROM. Onthe

other hand, the VIC always reads the R/W memory, not the ROM.

A problem arises whenwe wish to turn on a pixel without affecting the other

pixels controlled by the bits in that byte. This will require that we first per

form an ORA instruction that involves a byte in the bit-mapped memory. An

ORA instruction requires a read operation on the part of the 6510. Thus, we

must switch out the BASICROMbefore we can read a location in bit-mapped

memory.

The Commodore 64 system provides this option. Bits zero and one of the

I/O port (IOP) at location $0001 allow either the BASIC ROM, the operating

system ROM, or both to be switched out of the memory space. These facts

are summarized in Table 11-6. In the particular case we are considering, we

wish to replace the BASIC ROM with R/W memory, so we must switch bit

zero of the IOP at location $0001 to zero before we attempt to read bit-mapped

memory. This may be accomplished with the following sequence of

instructions:

IDA IOP

AND #$FE

STA IOP

The ROM must be switched back in before returning to BASIC. This may be

accomplished with the following sequence of instructions:

LDA IOP

ORA #$01

STA IOP

It is also good practice to disable interrupts when replacing either BASIC or

the operating systemROMwith R/W memory. SEI and CLI instructions will

accomplish this.

Table 11-6. Switching ROM and R/W memory. -

IOP

Bit # Name Value Function

0 LORAM 0 R/W memory from $A000 to $BFFF

1 BASIC ROM from $A000 to $BFFF

1 HIRAM 0 R/W memory from $E000 to $FFFF

1 Operating system ROM from $E000 to $FFFF

It should be clear that we could have put bit-mapped memory in the 8K

block from $E000 to $FFFF. In that case, we would have to switch the operating

system ROM out of the memory space rather than the BASIC ROM. Refer

to Table 11-6 to see that bit one must be switched to zero to accomplish this.
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E Plotting points in the bit-mapped mode

To plot a point on the screen, we need to set one bit in the byte ofbit-mapped

memory identified by ADH:ADL, calculated above. The bit number of the

bit we must set was also calculated above. It is (7 - x AND 7). Adding one

to this number gives the number of right shifts to move the carry flag into the

correct bit. Thus, our technique involves setting the carry flag and then

rotating the carry into the appropriate bit.

All of this is accomplished with our PLOT subroutine listed in Example 11-6.

This subroutine does three things. It switches the BASIC ROM out of the

system and disable interrupts. Given the x-coordinate, it places a one in the

bit position appropriate to that coordinate in the accumulator. Finally, it per

forms an OR operation involving the number in A and the appropriate byte

in the bit-mapped memory, and stores the result in bit-mapped memory, turn

ing on the pixel identified by (x,y). It does this by first calling the subroutine

in Example 11-5 to identify ADH:ADL. Study this program and the comments

in connection with our discussion.

Example 11-6. The Plot Subroutine

Object: Turn on the pixel at (x,y) without affecting the status of any other

pixel.

10 PLOT

11

12

13

14

15

16

17

18

19

20

21 BIT

22

23

24

25

26

27

28

29

30

JSR

SEI

LDA

AND

STA

LDA

AND

TAX

INX

LDA

SEC

ROR

DEX

BNE

ORA

STA

LDA

ORA

STA

CLI

RTS

ADHADL

+ $01

#$FE

+ $01

+XPOS

#7

#0

A

BIT

(IAL),Y

(IAL),Y

+ $01

#$01

+$01

;TURN X AND Y INTO AN ADDRESS.

;DISABLE OPERATING SYSTEM INTERRUPTS.

?CLEAR BIT ZERO OF 6510 IOP

;TO SWITCH BASIC ROM OUT

;OF SYSTEM TO ACCESS R/W MEMORY.

;IDENTIFY BIT POSITION IN BYTE.

;MASK ALL BUT LOW THREE BITS.

;PUT IN X FOR A COUNTER.

INCREMENT COUNTER.

;CLEAR A.

;CARRY WILL BE ROTATED INTO A.

;ROTATE RIGHT X TIMES.

?NEXT X.

;COMBINE WITH OTHER BITS IN

;THE SAME BYTE IN MEMORY.

;SWITCH BASIC ROM BACK INTO

;COMMODORE SYSTEM.

;ENABLE INTERRUPTS.

C890 20

C893 78

C894 A5

C896 29

C898 85

C89A A5

C89C 29

C89E AA

C89F E8

C8A0 A9

C8A2 38

C8A3 6A

C8A4 CA

C8A5 DO

C8A7 11

C8A9 91

C8AB A5

C8AD 09

C8AF 85

C8B1 58

C8B2 60

60 C8

01

FE

01

FD

07

00

FC

FB

FB

01

01

01

A subroutine to complement the routine in Example 11-6 is given in Example

11-7. The program in Example 11-7 turns off a pixel identified by (x,y). That

is, it clears the bit in bit-mapped memory that corresponds to the pixel whose

position is specified by (x,y). Sometimes it is desirable simply to move a dot

around on the screen rather than to plot a curve. In this case the pixel is first

turned on, and after a short delay it is turned off. This gives the appearance

of motion. The routine in Example 11-7 works exactly Uke the routine in Ex

ample 11-6, except that a bit is cleared rather than set.
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Example 11-7. The Unplot Subroutine

Object: Turn off the pixel at (x,y) without affecting the status of any other
pixel.

10 UNPLOT

11

12

13

14

15

16

17

18

19

20

21 BIT

22

23

24

25

26

27

28

29

30

31

JSR

SEI

LDA

AND

STA

LDA

AND

TAX

INX

LDA

SEC

ROR

DEX

BNE

EOR

AND

STA

LDA

ORA

STA

CLI

RTS

ADHADL

+ $01

#$FE

+$01

+XPOS

#7

#0

A

BIT

#$FF

(IAL),Y

(IAL),Y

+ $01

#$01

+ $01

;TURN X AND Y INTO AN ADDRESS.

;DISABLE OPERATING SYSTEM INTERRUPTS.

;CLEAR BIT ZERO OF 6510 IOP

;TO SWITCH BASIC ROM OUT

;OF SYSTEM TO ACCESS R/W MEMORY.

/IDENTIFY BIT POSITION IN BYTE.

;MASK ALL BUT LOW THREE BITS.

;PUT IN X FOR A COUNTER.

;INCREMENT COUNTER.

;CLEAR A.

;CARRY WILL BE ROTATED INTO A.

;ROTATE RIGHT X TIMES.

;NEXT X.

;COMPLEMENT THIS BYTE.

;SWITCH BASIC ROM BACK INTO

;COMMODORE SYSTEM.

;ENABLE INTERRUPTS;

C8C0 20

C8C3 78

C8C4 A5

C8C6 29

C8C8 85

C8CA A5

C8CC 29

C8CE AA

C8CF E8

C8D0 A9

C8D2 38

C8D3 6A

C8D4 CA

C8D5 DO

C8D7 49

C8D9 31

C8DB 91

C8DD A5

C8DF 09

C8E1 85

C8E3 58

C8E4 60

60 C8

01

FE

01

FD

07

00

FC

FF

FB

FB

01

01

01

E A bit-mapped graphics demonstration routine

The program in Example 11-8 will demonstrate the subroutines that we have

just been discussing. It plots a polar graph known as a five-leafed rose. It also

demonstrates how the bit-mapped graphics routines are called from a BASIC

program. On line 1, we call two of our subroutines: the first sets up the bit

mapped mode and the second clears bit-mapped memory. On line 2, we

POME the desired colors into memory location $0002, and then call the routine

to load these colors into screen memory. We chose black dots (color code $0)

on a light red background (color code $A). The next line calculates a function

R of an angle ANG. Line 4 can be replaced with almost any function that ex

presses the radius R as a function of an angle. On lines 5 and 6, the x- and

y-coordinates corresponding to R and ANG are calculated and rounded to

the nearest integer. The coordinate system is also shifted so that its origin (the

pole) is at (150,100), near the center of the screen.

It is important to understand lines 7 and 8. This is where the coordinates

x and y are POKEd into memory for use by our assembly-language routine.

First the LSB of x is POKEd into location 253, then the MSB of x is POKEd

into 254. Since y is a single-byte number, it is simply POKEd into location 255.

The PLOT subroutine in Example 11-6 is called next and the point is plotted.

The angle is incremented by about one degree, and the program loops back

to calculate and plot another point. Load all of the bit-mapped graphics

subroutines, then load and run this BASIC program.
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Example 11-8. A BASIC Program to Demonstrate the Bit-

Mapped Graphics Routines

0 REM EXAMPLE 11-8

1 SYS 51200:SYS 51232

2 POKE 2,10:SYS 51264

3 ANG=0

4 R=90*SIN(5*ANG)

5 X=150+R*COS(ANG):X=INT(X+.5)

6 Y=100-R*SIN(ANG):Y=INT(Y+.5)

7 POKE 253,XAND255:POKE 254,X/256

8 POKE 255,Y

9 SYS 51344

10 ANG=ANG+3.14159/180

11 GO TO 4

Figure 11-3. Photograph showing the output of the program in Example 11-8

with R = 90*SIN(5*ANG) on line 4.

The routine in Example 11-9 can be used to reduce the number of SYS com

mands required to call the bit-mapped graphics subroutines. If the color codes

are loaded into location $0002, a single call to the routine in Example 11-9 will

set up the bit-mapped memory so that the PLOT subroutine can be called.

In other words, this routine replaces the three SYS commands in Example

11-8 with one SYS 51440 command.
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Example 11-9. A Routine to Call the Bit-Mapped Graphics

Subroutines

Object: Reduce the three SYS commands required to use bit-mapped

graphics to one SYS 51440 command.

10 HIRES

11

12

13

JSR

JSR

JSR

RTS

MEMSET

CLEAR

SETCLR

;SET MEMORY POINTERS IN

;CLEAR HIRES MEMORY.

;PLACE COLORS IN SCREEN

VIC.

MEMORY.

C8F0

C8F3

C8F6

C8F9

20

20

20

60

00

20

40

C8

C8

C8

This completes our discussion of bit-mapped graphics and the VIC. Of

course, there are many topics that we could not pursue. As in the case of the

SID, the VIC is sufficiently powerful that several chapters, perhaps even a

book, would not do it justice. We made a more or less arbitrary decision to

introduce its bit-mapped graphics capability. Exploring its MOB (movable ob

ject blocks) or sprite capabilities would have been equally exciting.

At the very least, you should have seen a programming style emerge during

the last two chapters. This style includes reducing a programming problem

to a set of smaller problems, each of which can be handled with a relatively

simple subroutine.

IV Summary

The 6567 video interface chip (VIC) translates information in memory into

video information on the screen. The VIC can be made to use any of four 16K

banks of memory in the 64K memory space of the Commodore 64. This 16K

block contains the information needed to display characters, colors, and

movable object blocks or to do bit-mapped graphics.

Screen codes in a 1,000-byte block of screen memory are combined with

character display information in a 2K block of character memory to display

text or graphics characters on the screen. The colors of these characters are

determined by the color codes in color memory. The location of screen

memory and character memory is easily changed, allowing multiple screens

and character sets to be stored at one time.

In the bit-mapped mode, each bit in a 8,000-byte block of memory is

mapped into one of the 320-by-200 (64,000) pixels on the screen. If the bit

has a value of one, the pixel has one color; if it has a value of zero, it has

another color. These color codes are stored in screen memory. The main goal

of any bit-mapping program is to identify the location of the bit in memory

that controls the status of the pixel located on the screen at the point (x,y).
This capability allows you to graph mathematical functions such as sine

waves, ellipses, and parabolas. You can plot circuit diagrams, contour maps,

or play Etch-a-Sketch. You can simulate a satellite circling the earth, with

a death ray streaking out to destroy it.
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V Exercises

1. Execute the subroutine CLEAR in Example 11-3 with a SYS 51232 command.

How long do you think it takes to execute this subroutine? Now write a BASIC

program to perform the same function. How long does it take?

2. Think of a way to test subroutine UNPLOT in Example 11-7, then test it.

3. Write a BASIC program that uses the bit-mapped graphics subroutines to draw

the axes of an x,y coordinate system on the screen. Put the origin of the coor

dinate system at the screen point (160,100).

4. Consult your Programmer's Reference Guide to see how the VIC is disabled. Write

one routine to disable it, and another routine to enable it. All programs run

more quickly with the VIC disabled because it stops the 6510 microprocessor

to obtain display information.

5. Modify the programs in the bit-mapped graphics section to use the 8K block

of memory from $E000 to $FFFF for bit-mapped memory.

6. Consult your Programmer's Reference Guide for a description of the multi-color

bit-mapped mode. Modify the routines in this chapter to work in the MCM

(multi-color mode).

This mode is enabled by setting bit five in location $D011, the BMM enable

bit, and by setting bit four in location $D016. In this mode, the colors on the

screen are determined by pairs of bits. Each pair of bits in the bit-mapped

memory controls the color of two adjacent pixels. Thus, the horizontal resolu

tion is cut in half, giving a display of 160 pixels wide by 200 pixels down. In

return for a reduction in resolution, you obtain a greater variety of colors. In

the MCM/BMM mode, four pairs of bits in a byte in the bit-mapped memory

determine the color of the two-pixel-wide dot on the screen in this manner:

Bit Values Color Code Comes From

0 0 Background color #0 register ($D021)

0 1 High nibble in screen memory

10 Low nibble in screen memory

11 Low nibble in color memory
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Input/Output: The 6526

Complex Interface Adapter

I. Introduction

In this chapter, you will learn how to connect your computer to the out

side world. The Commodore 64 has two game control ports and a user port that

allow you to connect your computer to external devices. It is these ports that

we will describe and use in this chapter.

To make effective use of these ports, you must either have or acquire a

minimal amount of electronics experience. After all, every connection you

make to the computer is an electrical connection. For some programs, all you

will have to do is plug in a paddle or joystick; for others, you may have to

make several solder connections. We will document our work with

photographs and diagrams to help you feel comfortable with your wiring.

If you decide to do some of the electronic projects, you can obtain many

of the parts from a Radio Shack store. If you cannot find the parts there,

try one of the many electronic parts mail-order stores that advertise on

the back pages of many computer magazines. We obtained most of our

parts from:

Priority One Electronics

9161 Deering Ave.

Chatsworth, CA 91311

(213) 709-5464

Most firms require a minimum order, so read the entire chapter to see what

parts you may want to order before placing an order.

The Commodore 64 comes with two 6526 CIA (complex interface adapter)

integrated circuits. These two chips are used to interface the computer to the

keyboard, the two game control ports, and the user port. You do not make

any connections directly to the 6510 microprocessor: all I/O signals go through

an interface adapter. The 6526 CIA contains two I/O ports, two counter/timers,

225
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a time-of-day clock, and a serial port. The focus of this chapter will be the

I/O ports and the counter/timers. We begin with a discussion of some

fundamental I/O concepts.

II. Input/Output Fundamentals

A. Input ports

In an eight-bit microcomputer such as the Commodore 64, information is

stored, transferred, and manipulated in the form of eight-bit binary codes.

Even if you could peer inside a memory chip, the 6510 microprocessor, or

another integrated circuit inside the computer, you would not see eight-bit

binary codes lying about waiting to be read or modified. The ones and zeros

are merely a convenient way for human beings to view the information in the

computer. The computer deals with voltage levels, not numbers. A binary one

corresponds to a voltage level between two and five volts, while a binary zero

corresponds to a voltage level between zero and 0.8 volt. Voltages between

0.8 and two volts are indeterminate as far as their binary value is concerned.

The integrated circuits in the microcomputer usually switch very rapidly from

one binary level to another, passing through the indeterminate state as quickly

as possible. In short, a voltage near five volts is interpreted as a one, while

a voltage near zero volts is interpreted as a zero.

It should be obvious that to input information to the computer, an external

device of some kind must control the voltage levels on one or more input pins

connected to the microcomputer. External devices include mechanical swit

ches, phototransistors (in a light pen, for example), or other integrated cir

cuits outside of the computer. An input port consists of one to eight input pins.

Like a memory location, an input port is identified by one of the 65,536 ad

dresses that the 6510 is capable of producing. Thus, one way of reading the

information available at an input port is with an

LDA PORT

instruction, where PORT is a symbol for the address of the input port. Any

6510 instruction that involves a read operation may use the information that
is available at the input port.

The pins of an input port are numbered in the same way as the bits in a
memory location. Thus, an input port consisting of eight pins would have
the pins numbered

P7,P6,P5, ...,P0

The pin numbers correspond to the bit numbers of the eight-bit code that is
obtained when the input port is read. If the voltage on pin P0 is near five volts,
then when the port is read, bit zero will be one. If the voltage on pin P0 is near
zero volts, then when the port is read, bit zero will be zero. The same is true
for the other seven pin/bit combinations.
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B. Output ports

To control an external device, the computer must control the voltage levels

on one or more output pins. External devices include lights, relays, or other

integrated circuits, such as in a printer. An output port consists of one to eight

output pins. Like a memory location, an output port is identified by one of

the 65,536 addresses that the 6510 is capable of placing on the address bus.

One way of writing to an output port is with an

STA PORT

instruction, although any 6510 instruction that involves a write operation may

be used to modify the information at the output port.

The pins of an output port are numbered in the same way as the bits in a

memory location. Thus, an output port consisting of eight pins would have

the pins designated as

P7,P6,P5,...,P0

The pin numbers correspond to the bit numbers of the byte that is written

to the output port. If this byte has a one in bit seven, then pin P7 will have

a voltage level near five volts. If this byte has a zero in bit seven, then pin P7

will have a voltage level near zero volts. The same is true for the other seven

bit/pin combinations.

It is important to realize that the electrical power available at an output pin is

very limited. Do not expect to light even a small flashlight bulb with the five-

volt signal on an output pin. It is capable of supplying (sourcing) muchless than

one milliamp (0.001 ampere) of current. Needless to say, you are not going to

use your computer to supply the power to start your car or heat your coffee.

Nor does the output pin produce much of a short (or current sink) when

it is at zero volts. It will draw (sink) only about one or two milliamps. If you

attempt to supply more current to it, the voltage will rise and it will no longer

correspond to a bit value of zero.

What all of this means is that it is usually necessary to have one or more

integrated circuits between the output pin and the device you wish to control.

C. Memory-mapped I/O and interfacing

To summarize what we have just explained, an input/output port (I/O port)

is a location in the memory map of the computer that can be used to transfer
information either from an external device to the computer or from the com

puter to an external device. The type of input/output operations that use ports

in the memorymap of the computer system is called memory-mapped I/O. These

ports maybe accessed with any of the instructions in the 6510 instruction set

that involve a read or write operation.

The type of I/O in which from one to eight bits of information are trans

mitted simultaneously is called parallel I/O. If only one bit can be output
at a time, then the I/O operations are described as serial I/O. This chapter

will deal exclusively with parallel I/O.
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The process of designing and connecting devices that connect the computer

to the outside world is called interfacing. We will keep our interfacing projects

as simple and interesting as possible.

III. Input/Output with the 6526 CIA

A Data-direction registers and I/O ports

The Commodore 64 has two 6526 CIAs, called CIA #1 and CIA #2. Each CIA

has two eight-bit I/O ports, Port A and Port B. A diagram of the I/O ports

associated with CIA #1 is shown in Figure 12-1. CIA #1 I/O ports are used for

keyboard and game control functions. The operating system makes exten

sive use of this CIA, and some care mustbe taken not to disturb the operating

system when using CIA #1. Port A of CIA #2 is also used by the operating

system. This leaves Port B of CIA #2 to interface with the user port. The ad

dresses of the I/O ports are given in Xable 12-1.

Table 12-1. Memory locations of the complex interface adapter registers.

Symbol Address Description CIA

PRAl

PRB1

DDRA1

DDRB1

PRA2

PRB2

DDRA2

DDRB2

$DC00

$DC01

$DC02

$DC03

$DD00

$DD01

$DD02

$DD03

Port A data register

I/O pins

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

Port B data register

I/O pins

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

Port A data-direction register

Port B data-direction register

Port A data register

I/O pins

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

Port B data register

I/O Pins

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

Port A data-direction register

Port B data-direction register

#1

#1

#1

#1

#2

#2

#2

#2
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PORT A

PINS

PORT B

PINS

r^ PA0

^ PA1

_^ PA2

^ PA3

I -« PA4
PA5

^ PA6

_ PA7

f^ PB0

PB1

^ PB2

^ PB3

^ PB4

^ PB5

PB6

PB7

^ SP

r cnt

PC

FLAG

JL.
f7f6|5|4 3

MEMORY
2 i[0|^_LOCAT|ON

$DC00

|

[76 5|4 3
MEMORY

2 1|0H—LOCATION
$DC01

A
\
ADDRESS

BUS

N

ACONTROL
BUS

SERIAL

PORT

PIN

CONTROL

PINS "*

6526 CIA#/

Figure 12-1. The I/O port pins and memory locations oh the 6526 CIA #1.

Associated with each port is a data-direction register. It should be clear that

the information or data moves in one direction, from an external device to

the computer, if the port is an input port, while it moves in the other direc

tion, from the computer to an external device, if the port is an output port.

The code stored in a port's data-direction register determines whether the port

is an input or output port.

• A port is an input port if each bit in its data-direction register is zero.

• A port is an output port if each bit in its data-direction register is one.
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Thus, a port maybe programmed to be either an input port or an output port,

depending on the code stored in its DDR (data-direction register). The follow

ing sequence of four instructions make Port A an output port and Port B an

input port:

LDA #$FF

STA DDRA

LDA #$00

STA DDRB

In fact, any individual pin of a port may be programmed to be either an in

put pin or an output pin. There is a one-to-one correspondence between the

bit numbers of the bits in the DDR and the I/O port pin numbers.

• If a bit in the DDR is zero, then the corresponding I/O pin is an input pin.

• If a bit in the DDR is one, then the corresponding I/O pin is an output pin.

Assume we wantPA3 through PAO to be output pins andPA7 through PA4

to be input pins. The following two instructions suffice:

LDA #$0F

STA DDRA

E A joystick as an input device

We will begin our examples with a program that illustrates how to read the

five input pins associated with the Commodore 64 Game Control Port 2. This

port is used to read either a joystick with a fire button or a game paddle with

a fire button. In Example 12-1, we illustrate how to read the port with a joystick

attached.

A joystick consists of five switches, four of which are used to control the

direction in which something on the screen moves; the other is the fibre but

ton, used to destroy something on the screen, such as a sprite. There is one

switch for each direction, up, down, left, and right. In certain positions of the

joystick, two switches are closed at one time. You can have combinations such

as up-left, down-right, up-right, and up-left. Refer to Figure 12-2 if you are

interested in the circuit diagram.

The first line in Example 12-1 disables the interrupts from the operating

system. This is important since the same port that reads the joystick is used

by the operating system to read the keyboard. The next three lines clear bits

zero to four of the Port A data-direction register (DDRA), ensuring that the

corresponding pins of Port A act as input pins.

The function of lines 16 through 18 in Example 12-1 is to wait for the fire

button to be pressed. If it is left unconnected, an input pin on the CIA will

"float" to five volts, corresponding to a binary one. When the fire button

is pressed, it connects the input pin to zero volts (ground), corresponding

to a binary zero. Thus, the program waits in the loop until the fire button

connected to pin PA4 of the CIA is pressed.
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DE9Sr

231

PORT A, CIA #1,

ADDRESS $DC00

DE9S

FRONT

DE9S

REAR

SOLDER

CONNECTION

COMMODORE 64

MICROCOMPUTER

Figure 12-2. Circuit diagram of a joystick, (a) Pin diagram of the DE9S con

nector, (b) Schematic diagram of the joystick circuit. The switches SW can

be either pushbutton, toggle or slide switches, or they can be the switches

in a commercial joystick.

After the fire button is pressed, the program reads Port A on line 20 of the

program, masks the bits that are not connected to Control Port 2 on the Com

modore 64, and stores the result in location $0002. This completes all opera

tions involved in configuring and reading Port A. It is illustrative, however,

to display the binary values obtained by reading the four least-significant bits

of Port A, the values of which are determined by the setting of the joystick.

The remainder of the program, lines 24 through 32, is used to display the par

tially masked byte obtained from Port A. Remember, the most-significant nib

ble was masked, so these four bits will be zero.

Example 12-1. Reading the Joystick Inputs

Object: Read and display the bit values of Port A, pins PAO through PA3,

determined by the setting of the joystick in Control Port 2.

10 START

ll ;

12

13

14

15

16

17 LOAF

18

19 ;

20

21

22

SEI

LDA

AND

STA

LDA

BIT

BNE

LDA

AND

STA

#$E0

DDRA

DDRA

#$10

PRA

LOAF

PRA

#$0F

+ $02

;DISABLE SYSTEM INTERRUPTS. C000 78

;CONFIGURE PORT A TO HAVE PINS C001 A9 E0

;PA0-PA4 AS INPUT PINS. C003 2D 02 DC

C006 8D 02 DC

;MASK FOR FIRE BUTTON BIT. C009 A9 10

;IS FIRE BUTTON PRESSED? C00B 2C 00 DC

;NO, SO WAIT FOR IT. C00E DO FB

;YES, READ THE PORT. CO10 AD 00 DC

;MASK MOST SIGNIFICANT NIBBLE. C013 29 OF

;STORE JOYSTICK CODE HERE. C015 85 02
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23

24

25 BACK

26

27

28

29

30

31

32

33

LDX #$08

ASL +$02

LDA #00

ADC #$30

JSR CHROUT

DEX

BNE BACK

LDA #$0D

JSR CHROUT

JMP START

;DISPLAY EIGHT BITS.

;SHIFT LEFT INTO CARRY.

;CLEAR A.

;CONVERT TO ASCII.

;OUTPUT THE BIT VALUE.

;LOOP BACK TO DISPLAY EIGHT BITS.

;OUTPUT CARRIAGE RETURN.

;LOOP FOREVER.

CO17 A2

C019 06

C01B A9

C01D 69

C01F 20

C022 CA

C023 DO

C025 A9

C027 20

C02A 4C

08

02

00

30

D2

F4

0D

D2

00

FF

FF

CO

Load the program into memory, then call it with a SYS 49152 command.

Insert the joystick control into Control Port 2. Press the fire button, then

move the joystick. Do the values you get for PA0 through PA3 agree with

those given in Table 12-2? Write and test a program that reads Control Port

1. This port is connected to pins PB0 through PB3 with the fire button

connected to PB4.

Table 12-2. Bit values determined by the joystick settings.

Bit Value Joystick Position

PA3

1

1

1

1

0

PA2

1

1

1

0

1

PA1

1

1

0

1

1

PA0

1

0

1

1

1

Control port 2

Neutral

Up

Down

Left

Right

Perhaps you are interested in controlling these bit values with an ordinary

switch rather than a joystick. A circuit diagram is given in Figure 12-2.

You will need a DE9S (female) connector to attach to the DE9P (male)

connector used for each of the game-control ports on the Commodore

64. The DE9 connectors are subminiature D-type connectors: one is shown

in Figure 12-3.

There are at least three approaches that you can use to connect your

electronic components, resistors, capacitors, switches, and so on, to the

control port connectors. You can solder wires to the pins on the DE9S

connectors, and the other ends of these wires can be connected to the

electronic components mounted on a breadboard or a more permanent

circuit board. See Figure 12-3 for photographs that illustrate this

approach.

The second approach involves soldering the nine pins of a DE9S connec

tor to nine of the leads of a 14- or 16-conductor DIP jumper with a 14- or 16-pin

DIP socket at the other end. This approach is shown in Figure 12-4. Although

the soldering is tedious, this approach allows great flexibility in testing and

prototyping various circuits. Breadboards for prototyping circuits will be
shown in Figures 12-9 and 12-11.
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(a)

(b)

Figure 12-3. Photographs of the DE9S connector, (a) The connector,

(b) The connector with wires attached.

A third approach is to dismantle a joystick and use its DE9S connector and

cable. It is not difficult to solder other leads to the joystick cable leads and con

nect these to a breadboard. You are left to your own ingenuity if none of these

approaches suits you.
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Figure 12-4. A DIP jumper connected to a DE9S connector.

C. A Commodore 64 control port as an output port

Nowwe will make use of an output port. Our next programming example

allows us to select the so-called POT inputs on the SID and make analog-to-

digital conversions. Pins PA7 and PA6 of Port A on CIA #1 control an in

tegrated circuit known as an analog switch. This integrated circuit is identified

by its number, 4066, on the Commodore 64 circuit diagram. The 4066 selects

which of the paddle inputs connected to the control ports will be connected

to the POTXandPOTY inputs onthe 6581 SID. Refer to Table 12-3 to see which

paddle inputs are selected by PA7 and PA6. Notice that four different pad

dles may be selected, two from each control port.

Table 12-3. Using PA7 and PA6 to select a paddle.

PA7 PA6 Control Port # Paddles

1

0

0

1

2

1

POTBX POTBY

POTAX POTAY

To select which control port is going to be used, we must first make pins

PA7 andPA6 output pins. One way to accomplish this is with the sequence:

LDA #$C0

STA DDRA
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After that is accomplished, storing the number $80 in Port A selects Control

Port 2, while the number $40 selects Control Port 1.

A program to select Control Port 2 for the paddle input and read POTX is

given in Example 12-2. The first three lines of this program disable the inter

rupts from the operating system and save the current code in data-direction

register A (DDRA) in memory. Upon returning to BASIC it will be important

to leave DDRA unaffected, since Port A is also used to read the keyboard.

Lines 13 and 14 store $80 in Port A, selecting Control Port 2 for the paddle

inputs. Note that pins PA7 andPA6 may not yet be output pins. Theybecome

output pins after the instructions on lines 15 and 16 of the program in Example

12-2 are executed.

The POT inputs on the SID require a minimum of 512 clock cycles before

they provide valid information. Thus, in lines 18 through 20 the program waits

in a delay loop. The POTBX input on the SID is read on line 22 of the pro

gram, and its value is stored in location $0002 on line 23. The POTBY input

would be read at location $D41A. The value of the code in DDRA is restored

on lines 24 and 25, and the program returns to the calling program on line 27.

Example 12-2. Making PA7 and PA6 Output Pins—Reading

the POTBX Input

Object: Configure Port A on CIA #1 to have PA7 and PA6 as output pins,

selecting Control Port 2 for paddle inputs. Read the POTBX input and store it.

10 ATOD

11

12

13

14

15

16
1 "7
1 ' /

18

19 LOOP

20
O 121 ;

22

23

24

25

26

27

SEI

LDA

STA

LDA

STA

LDA

STA

LDX

DEX

BNE

LDA

STA

LDA

STA

CLI

RTS

DDRA

$0313

#$80

PRA

#$C0

DDRA

#$E0

LOOP

POTX

+ $02

$0313

DDRA

;DISABLE INTERRUPTS.

;SAVE VALUE IN DDRA.

;IDENTIFY GAME PORT 2.

;SELECT THE ANALOG SWITCH.

;PINS PA7 AND PA6 WILL BE OUTPUT

;PINS TO ANALOG SWITCH.

;DELAY FOR AT LEAST 512 CYCLES.

;SHORT DELAY LOOP.

;READ PADDLE X.

;STORE IT HERE.

;GET DDRA BACK AGAIN.

;RESTORE DDRA.

;ENABLE INTERRUPTS.

;RETURN TO CALLING PROGRAM.

cooo

C001

C004

C007

C009

cooc

C00E

con

C013

C014

C016

C019

C01B

C01E

C021

C022

78

AD

8D

A9

8D

A9

8D

A2

CA

DO

AD

85

AD

8D

58

60

02

13

80

00

CO

02

E0

FD

19

02

13

02

DC

03

DC

DC

D4

03

DC

In a moment we will describe how to use this program, but first we will

briefly describe how the POT inputs work. Refer to Figure 12-5 for a schematic

diagram of a POT input. You may also wish to remove the back from one of

your paddle inputs to see the potentiometer inside. Rotating the knob on the

potentiometer varies the resistance between the +5V connection and the POT

input. This varies the rate at which the 1,000 pf capacitor charges. This capacitor

is in the circuitry of the Commodore 64. You do not need to wire it in the
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circuit. The higher the resistance, the longer it takes the capacitor to charge.

Circuitry inside the SID measures how long it takes to charge to a certain

voltage and it stores this number in one of its registers. The twoPOT registers

are read at addresses $D419 (POTX) and $D41A (POTY).

+ 5V
DE9S

> POTENTIOMETER

47OKJ2 V—|

$

POTBX

CONTROL

PORT 2

1
I

SID

1000 PF

Figure 12-5. Circuit diagram of a game paddle input. There is an identical

circuit for POTBY input.

Inside each of your game paddles is a 470K ohm potentiometer. Rotating

it varies the number in the corresponding POT register from zero to 255.

Resistance is an analog quantity which, by means of a POT input, can be

represented with a number, a digital quantity. Thus, the POT inputs perform

analog-to-digital conversions. This is an extremely useful thing to be able to do.

To demonstrate the program in Example 12-2, we will call it from the BASIC

program in Example 12-3. This program also makes use of the assembly-

language bit-mapped graphics routines, Examples 11-2 to 11-9, so they must

be loaded into memory. The program in Example 12-3 graphs the paddle in

put along the y-axis, while the x-axis graphs time, making a graph of the

potentiometer resistance as a function of time.

Example 12-3. A BASIC Program to Read and Display

Paddle Input

5 REM EXAMPLE 12-3

10 POKE 2,10 :REM SET COLOR.

20 SYS 51440 :REM INITIALIZE BIT MAPPED GRAPHICS.

30 K=199/255

40 FOR X=0 TO 319 :REM COLLECT 320 POINTS.

50 SYS 49152-.REM READ PADDLE

60 Y=PEEK(2):Y=INT(K*Y+.5)

70 POKE 253,XAND255:POKE 254,X/256

75 POKE 255,Y

80 SYS 51344

90 NEXT X

100 GO TO 10 .
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Load the bit-mapped graphics machine-language routines, load the pro

gram in Example 12-2, and RUN the BASIC program in Example 12-3. Now

rotate the paddle knob. You should see the graph go up and down on the

screen. We looped a string through a pendulum bob and looped it around

a game paddle knob. Then we started the pendulum swinging and started

the program. Our results are shown in Figure 12-6. Notice that the amplitude

of the swing decreases with time, an effect called damping. Also observe that

the graph of the position of the pendulum as a function of time has a sine
waveform.

Figure 12-6. Output of Example 12-3 with a pendulum attached to the game-

paddle potentiometer.

There are other devices that you can connect to the paddle inputs. Figure

12-7 shows that the potentiometer can be replaced by either a thermistor or

a phototransistor. Using the same programs with the thermistor replacing

the potentiometer gives a graph on the video monitor that shows how

temperature varies with time. Phototransistors are sensitive to light, so replac

ing the thermistor with a phototransistor gives a graph on the video monitor

that shows how the light intensity varies with time. Only one of the devices

shown in Figure 12-7 should be in the circuit at one time. The phototransistor

is available from Radio Shack stores, while thermistors can be obtained from:

Newark Electronics

500 N. Pulaski Road

Chicago, IL 60624

(312) 638-4411
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DE9S

c

I
FPT-100 (
RADIO SHACK V
NO. 276-130

+ 5V

1

'THERMISTOR

=•) FENWAL

^/GA51P8
j OR GA 52P2

POTBX

7

Q

PHOTOTRANSISTOR

CONTROL

PORT 2

Figure 12-7. Two game paddle input circuits. The phototransistor is sensitive

to light; the thermistor is sensitive to temperature.

The rate at which data is acquired from the POT input and plotted on the screen

may be controlled by a FOR.. .NEXT loop inserted on line 55 of Example 12-3.

D. More input/output circuits

We conclude this section with two additional programming examples that

illustrate simple I/O operations. The first program reads pin PA4, accessed

at the fire button on Control Port 2, and outputs this bit to pin PAO, also

available at Control Port 2. We connected the PAO pin to a 7406 inverter in

order to drive a light-emitting diode (LED), as shown in Figure 12-8. A

photograph of this circuit appears in Figure 12-9. A breadboard similar to the

one in the photograph is available at Radio Shack stores.

BI-COLOR

TRI-STATE

DE9S

1-

2-

3-

4-

5-

6-

7-

7406

(TOP

VIEW)

-14

-13

-12

-11

-10

- 9

- 8
CONTROL

PORT 2

Figure 12-8. Circuit diagram of a one-bit output port. The one-bit output makes

a light-emitting diode (LED) glow.
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Figure 12-9. Photograph of the one-bit I/O port.

Writing a one to bit zero of Port A turns on the light-emitting diode (LED).

Writing a zero to bit PAO turns off the LED. We suggest using a Tri Color light-

emitting diode available from Radio Shack stores, since the polarity of such

an LED is of no consequence. It changes from a red glow to a green glow when

the polarity is reversed.

A program to demonstrate how a computer can control an output device,

such as the LED in the circuit of Figure 12-8, is given in Example 12-4. Lines

11 through 14 of this program are used to configure the PortA data-direction

register (DDRA) so that pin PAO is an output pin and pin PA4 is an input pin.

The rest of the program merely transfers tike value of bit four to bit zero. Press
ing the push button switch turns off the LED: the LED glows when the switch

is not touched. Wire the circuit and then load and execute the program. The

LED should respond to changes in the switch condition. You have just created

a very expensive switch.

Our last demonstration program and circuit elaborate on the previous ones.

In Example 12-5 we have a program that reads the four least-significant bits

of Port A on CIA #1 and transfers these values to the four least-significant bits

of Port B on the same CIA. Port A is accessed at Control Port 2, and these bits

may be controlled by a joystick plugged into this port or with the circuit shown
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Example 12-4. One-Bit I/O Operations

Object: Transfer bit four, an input bit, to bit zero, an output bit, of Port A.

10

11

12

13

14

15 LOOP

16

17

18

19

20

21

22

SEI

LDA

AND

ORA

STA

LDA

AND

LSR

LSR

LSR

LSR

STA

JMP

#$EF

DDRA

#$01

DDRA

PRA

#$10

A

A

A

A

PRA

LOOP

;DISABLE INTERRUPTS.

;CLEAR BIT 4 OF DDRA TO

;MAKE PIN PA4 AN INPUT PIN.

;MAKE PAO AN OUTPUT PIN.

;READ PORT A.

;MASK ALL EXCEPT BIT 4.

;SHIFT BIT 4 INTO BIT 0.

;STORE IT IN PORT A.

;LOOP FOREVER.

cooo

C001

C003

C006

C008

C00B

C00E

C010

con

C012

C013

C014

C017

78

A9

2D

09

8D

AD

29

4A

4A

4A

4A

8D

4C

EF

02

01

02

00

10

00

0B

DC

DC

DC

DC

CO

in Figure 12-2. Port B is accessed at Control Port 1, and a circuit to drive four

light-emitting diodes (LEDs) from this port is shown in Figure 12-10. A

photograph of this circuit is shown in Figure 12-11.

DE9S
+ 5V

470 Q

CONTROL

PORT 1

7406

Figure 12-10. A four-bit output port driving light-emitting diodes.

The program in Example 12-5 configures the four low bits of Port B to be output

bits and the four low bits of Port A to be input bits. The remainder of the pro

gram is a loop in which the data from Port A is transferred to Port B. Wire

the circuit, plug a joystick into Control Port 2, and execute the program in

Example 12-5. Move the joystick around and the glowing LEDs will tell you

which joystick switches are closed.
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Figure 12-11. Photograph of the four-bit output circuit.

Example 12-5. Transferring Data From One Port to Another

Object: Transfer the four least-significant bits from Port A to Port B on CIA #1.

10

11

12

13

14

15

16

17 LOOP

18

19

SEI

LDA #$F0

AND DDRA

STA DDRA

LDA #$0F

ORA DDRB

STA DDRB

LDA PRA

STA PRB

JMP LOOP

;DISABLE INTERRUPTS.

;CLEAR BITS 0-3 OF DDRA TO

;MAKE PINS PA0-PA3 INPUT PINS.

;SET BIT. 0-3 OF DDRB TO

;MAKE PI...IS PB0-PB3 OUTPUT PINS.

;READ PORT A.

;OUTPUT THIS RESULT TO PORT B.

;STAY IN INFINITE LOOP.

C000

C001

C003

C006

C009

C00B

C00E

C011

CO 14

C017

78

A9 F0

2D 02 DC

8D 02 DC

A9 OF

0D 03 DC

8D 03 DC

AD 00 DC

8D 01 DC

4C 11 CO

This concludes our brief introduction to input/output operations. Of course,

there are more exciting and useful things to controlthan light-emitting diodes,

for example, relays and solid-state switches. At the end of this chapter we

provide references that provide more information about devices that you can

connect to your computer. Our purpose has been fulfilled, since you now

know how to perform input and output operations in assembly language.
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It might be worth adding that a much more convenient but expensive way

of experimenting with input switches and output LEDs is with the LR-25 out

board pictured in Figure 12-12. The outputs from a CIA can be connected

directly to the LEDs on the LR-25 outboard with no other driving circuits re

quired. The board has a set of switches that can be connected directly to in

put pins on the CIA. This equipment is available from:

E & L Instruments

61 First Street

Derby, CT 06418

Figure 12-12. Photograph of the E & L Instruments LR-25 outboard connected

to a Super Strip.

Now we will turn our attention to the timing abilities of the 6526 CIA.

IV Counting and Timing with the 6526 CIA

The focus of this section will be a precision timing program that you can

use either to measure time intervals between events or to measure the fre

quency of a pulse train. We begin with fundamental concepts.

A Counting/timing fundamentals

In its simplest form, a counter/timer consists of a register in an integrated

circuit. The register occupies one or more memory locations in the memory

map of the microcomputer. The counter/timer is loaded by storing a number

in the register. STA orPOKE instructions maybe used to load a counter/timer.

When the counter/timer is started, the number initially loaded into the register

is decremented at a regular rate by the microcomputer system clock or by an

external source of pulses applied to a pin on the counter/timer integrated
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circuit. When the number decrements through zero, a bit in another register
is set or an interrupt is requested. The event "counting through zero" is called

an underflow. The bit that signals the underflow is commonly called a flag.

A counter/timer is, among other things, capable of precisely controlling the

length of the time interval between the instant the counter/timer is started and

the instant it underflows. In assembly-language programming, the

counter/timer frequently replaces delay loops produced by software and the

considerable difficulty associated with producing a specified delay. Moreover,

while the counter/timer is counting down toward underflow, the microprocessor

can be doing a variety of other tasks, whereas in a delay loop it can only per

form the instructions in the loop. The Commodore 64 operating system uses

a counter/timer to produce an interrupt every 60th of a second. At this time,

the keyboard is scanned to see if new information is present. A number of other

tasks are also performed. In other words, almost all of the computing takes place

between interrupts, while a counter/timer is performing its countdown. You

can, in fact, speed up the execution of any program by disabling these inter

rupts. Use either an SEI instruction or stop the counter/timer that is produc

ing the interrupts using a technique that we will describe shortly.

We will now look specifically at the counter/timers on the 6526 CIAs. A short

memory map of the registers in the CIA #2 that will be of importance to us

in counting/timing operations is given in Figure 12-13. Operating a

ADDRESS

$DD04

READ WRITE

TIMER A LATCH LOW TIMER A COUNTER LOW

$DD05 TIMER A LATCH HIGH TIMER A COUNTER HIGH

$DD06 TIMER B LATCH LOW TIMER B COUNTER LOW

$DD07 TIMER B LATCH HIGH TIMER B COUNTER HIGH

$DD0D
INTERRUPT CONTROL REGISTER

FLAG BITS

INTERRUPT CONTROL REGISTER

MASK BITS

$DD0E CONTROL REGISTER A CONTROL REGISTER A

$DD0F CONTROL REGISTER B CONTROL REGISTER B

Figure 12-13. Memory map of the counter/timer registers in complex interface

adapter (CIA) #2.
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counter/timer involves the use of two registers besides the counter/timer

registers. Each of the two counter/timers has a control register that is used to

select one of the several modes of operation that are available. The control

registers are diagrammed in more detail in Figures 12-14 and 12-15. Bit zero

in the control register is used to start the counter/timer.

CRA7

TOD 60 Hz 0-

TOD 50 Hz 1 -

CRA6 CRA5

SERIAL IN 0-

SERIALOUT1-

INTERNAL CLOCK 0-

EXTERNAL CLOCK 1 •

CRA4

NO EFFECT 0-

FORCE LOAD 1

CRA3 CRA2 CRA1 CRA0

0 STOP TIMER A

1 START TIMER A

0 PB6 OFF

• 1 PB6 ON

0 PULSE PB6

1 TOGGLE PB6

•0 FREE RUNNING MODE

-1 ONE SHOT MODE

Figure 12-14. Bit structure of control register A (CRA) of the complex interface

adapter (CIA).

A bit in another register, called the interrupt control register (ICR), is used

to signal the underflow of a counter/timer. Each bit in the ICR is called a flag.

The significance of each bit in the ICR, when it is read, is shown in Figure 12-16.

Bit seven of the ICR is set when any of the other bits are set. All the flags are

cleared when the ICR is read.

The CIA can be programmed so that an interrupt is requested with any flag

setting. Refer to Figure 12-17. Writing to the interrupt control register (ICR)

either enables or disables this interrupt request feature, using the following

convention:

• If bit seven (ICR7) of the byte written to the ICR is one, any mask bit that has

the value of one will enable the interrupt request feature.

• If bit seven of the byte written to the ICR is zero, any mask bit that has the value

of one will disable the interrupt request feature.

It is important to realize that the interrupt request pin of CIA #2 is connected

to the NMI pin on the 6510. Thus, an interrupt from CIA #2 will be a non

maskable interrupt (NMI). The interrupt request pin of CIA #1 is connected

to the IRQ pin on the 6510. Interrupts were described in Chapter 9.
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CRB7I CRB6 CRB5 CRB4

TODO ■

ALARM 1

INTERNAL CLOCK 0 0-

EXTERNAL CLOCK 01-

TIMER A UNDERFLOW 1 0-

TIMER A UNDERFLOW 1 1 •

WITH CNT = 1

NO EFFECT 0-

FORCE LOAD 1•

CRB3 CRB2 CRB1 CRB0

•0 STOP TIMER

■ 1 START TIMER

- 0 PB7 OFF

-1PB7ON

— 0 PULSE PB7

—1 TOGGLE PB7

0 FREE RUNNING MODE

•1 ONE SHOT MODE

Figure 12-15. Bit structure of control register B (CRB) of the complex interface

adapter (CIA).

ICR7

SET WHEN ANY BIT,-

ICR0 — ICR4, IS SET.

ICR6 ICR5 ICR4

NOT USED

ICR6 = ICR5 = 0

SET BY NEGATIVE

TRANSITION ON FLAG PIN

ICR3 ICR2 ICR1 ICR0

• SET BY UNDERFLOW

OF TIMER A

■ SET BY UNDERFLOW

OF TIMER B

SET WHEN TOD CLOCK

EQUALS ALARM

SET WHEN SERIAL PORT

ISFULUEMPTY

Figure 12-16. The flags in the interrupt control register (ICR). All the flags are

cleared when the ICR is read.

Finally, there are the counter/timer registers themselves. Refer again to

Figxire 12-13. The 6526 CIA has two counter/timers called TimerA and Timer

B. Just as in the case of the ICR, these registers have a different function, (

depending on whether the operation involves reading or writing. Each timer

consists of a 16-bit register, called the timer latch or prescaler. The 16-bit latch

consists of two eight-bit memory locations that can be loaded with two STA

instructions. You can only write to the latch: you cannot read it. When a timer
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ICR7

SET/CLEAR BIT •

ICR6

NOT USED-

ICR5 ICR4

FLAG PIN MASK-

ICR3 ICR2 ICR1 ICR0

-TIMER A MASK

- TIMER B MASK

-ALARM MASK

-SERIAL PORT MASK

Figure 12-17. The mask bits in the interrupt control register (ICR). If bit seven

(ICR7) of the byte written to the ICR is one, then any mask bit written with a

one will enable an interrupt request on the IRQ pin. If bit seven (ICR7) of the

byte written to the ICR is zero, then any mask bit written with a one will disable

the interrupt request (IRQ).

is started, by setting bit zero of its control register, the number in the latch

is automatically transferred to the 16-bit counter and the number in the counter

begins to decrement.

Whenthe memory locations corresponding to the latch are read, the number

obtained is the value of the counter at that instant, not the number you wrote

to the latch. In a sense, by reading the counters you can "watch" the

timer/counter decrement. In fact, the counters are not usually read: the most

common applications only require the reading ofthe flags in the interrupt con

trol register (ICR) to see whether an underflow has occurred.

B. Counting/timing programming examples

It is time to illustrate some of these concepts with some simple program

ming examples. The program in Example 12-6 produces a delay of 50,000 dock

cycles. We calculate the delay from the instant the timer is started on line 18

of the programto the instant the TimerA flag is set. IfN is the number loaded

into the timer, then this time interval T is given by the expression

T = (N + 1)*TC

where TC is the period of the system clock. In the case of the Commodore

64 clock, TC = 0.977778 microsecond.

Example 12-6. Producing a Delay of 50,000 Clock Cycles

Object: Configure TimerA to produce a one-shot delay of 50,000 clock cycles.

10

11

12

13

14

15

16

17

18

SEI

LDA

STA

LDA

STA

LDA

STA

LDA

STA

#$7F

ICR

#$4F

TALO

#$C3

TAHI

#$09

CRA

;DISABLE SYSTEM INTERRUPTS.

;DISABLE INTERRUPTS FROM CIA #2.

;DELAY FOR 50000 CLOCK CYCLES.

;$C34F + 1 = 50000.

;LOAD THE MSB OF THE TIMER.

;PUT TIMER A IN ONE-SHOT MODE

;AND START TIMER A.

7F

8D 0D DD

C000 78

C001 A9

C003

C006 A9 4F

C008 8D 04 DD

C00B A9 C3

C00D 8D 05 DD

C010 A9 09

C012 8D 0E DD
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19

20 WAIT

21

22

23

LDA

BIT

BEQ

CLI

RTS

#$01

ICR

WAIT

;MASK ALL BUT TIMER A

;LOGICAL AND WITH ICR

;WAIT FOR TIMER FLAG

;ENABLE INTERRUPTS.

FLAG.

TO BE SET.

C015

C017

C01A

C01C

C01D

A9

2C

F0

58

60

01

OD DD

FB

Study the program in Example 12-6 in connection with Figures 12-13 to 12-16

and our line-by-line description that follows. On line 10 we disable the

operating system interrupts. The next two lines write the byte $7F to the in

terrupt control register (ICR). Study Figure 12-17 and observe that the effect

of writing this byte to the ICR is to disable all interrupt requests from it. The

instructions on lines 13 through 16 of the program in Example 12-6 load the

latch of Timer A with the 16-bit number $C37F. $C37F + 1 = 50,000.

Lines 17 and 18 load Control Register A with the code $09. Study Figure

12-14 and observe that this will start the timer in its one-shot mode. In the one-

shot mode, the counter/timer counts down just once. In the free-running mode,

the counters are automatically reloaded from the latches. We have selected

the internal clock as our source of pulses to decrement the counter/timer. It

is also possible to count the pulses from an external pulse source if CRA5 is

set and a source of pulses is applied to the CNT pin on the CIA. Other

operating modes for TimerA that maybe selected by programming the CRA

will be explored later.

An underflow of Timer A sets bit ICR0. On line 19 of the program in

Example 12-6, we make a mask to isolate bit zero of the ICR. Lines 20 and 21

cause the program to wait in a loop until the underflow occurs, after which

interrupts are enabled and the control returns to the calling program on line

23. This completes our line-by-line description of Example 12-6. The program

will take slightly more than 50,000 dock cycles to execute; during most of that

time, it is simply waiting for the Timer A flag, ICR0, to be set.

Our next programming example illustrates how the two timers can be

coupled to generate long delays. In this case, we program Timer B to count

underflows from TimerA that is operated in its free-running mode. Refer to

Figure 12-15 and observe that Timer B can be programmed to count internal

dock pulses, external clock pulses on the CNT pin, Timer A underflows, and

TimerA underflows when the CNT pin is at logic one. In the program in Ex

ample 12-7, Timer B is programmed to count Timer A underflows. Assum

ing that Timer B has been started, the time T between the instant when Timer

A is started and Timer B underflows is given by the formula

T = (NA + 1)*(NB + 1)*TC

where NA is the 16-bit number stored in the latch of Timer A and NB is the

16-bit number stored in the latch of timer B. The maximum time interval that

can be produced in this way is 4,212 seconds, which is slightly more than one

hour.

The program is listed in Example 12-7. We have chosen to produce

underflows from Timer A every 50,000 clock cycles. We count a total of 200

of these underflows on Timer B before ending the program. This will produce
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a delay of ten million clock cycles, which is approximately 10 seconds. Study

this program and its comments in connection with Figures 12-14 to 12-16. In

particular, notice that the loop in which we wait for TimerB to underflow tests

bit one (ICR1), the Timer B flag, in the ICR.

Load the program and type in the SYS 49152 command. When you hit

return, check your watch. Approximately 10 seconds later the Commodore

64 returns to BASIC with the READY prompt.

Example 12-7. Operating the Timers Together

Object: Produce a delay of 10 million clock cycles.

;DISABLE SYSTEM INTERRUPTS. CO00 78

;DISABLE INTERRUPTS FROM CIA #2. C001 A9 7F
C003 8D OD DD

;DELAY FOR 50000 CLOCK CYCLES. C006 A9 4F

;$C34F + 1 = 50000. C008 8D 04 DD

;LOAD THE MSB OF THE TIMER. C00B A9 C3
C00D 8D 05 DD

;TB COUNTS 200 TA UNDERFLOWS. CO10 A9 C7
C012 8D 06 DD

C015 A9 00

C017 8D 07 DD

;SET UP TB AND START IT. C01A A9 49

C01C 8D OF DD

;TIMER A IN FREE RUNNING MODE. C01F A9 01

;START TIMER A. C021 8D 0E DD

;MASK ALL BUT TIMER B FLAG. C024 A9 02

;LOGICAL AND WITH ICR. C026 2C 0D DD

;WAIT FOR TIMER FLAG TO BE SET. C029 F0 FB

;ENABLE INTERRUPTS. C02B 58

C02C 60

Our next example involves counting external pulses on the CNT pin.

The first requirement is a source of pulses, and the next requirement

is a means for connecting the source of pulses to the CNT pin. This pin

is available at the Commodore 64 user port. A pin diagram of this port

is given in Figure 12-18. A photograph of the 12/24 edgeboard connec

tor used to access the user port is shown in Figure 12-19. This connector

is available from Priority One Electronics, which we mentioned above.

A circuit diagram showing how to use a mechanical switch as a source

of pulses is shown in Figure 12-20. (This circuit is duplicated on the E&L

LR-25 outboard, mentioned earlier.) A positive pulse occurs on pin six

of the 7400 (or 74LS00) whenever the double-pole single-throw (DPST)

switch is changed from its NC (normally-closed) position to is NO

(normally-open) position.

The program in Example 12-8 waits in a loop until nine positive pulses are

applied to the CNT pin, pin six, on the user port. Study the program in con

nection with the diagram of the CRB and the ICR, Connect the circuit shown

in Figure 12-20. Load and execute the program. Press the button that produces

a positive pulse nine times, and program control will return to BASIC.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 WAIT

30

31

32

SEI

LDA #$7F

STA ICR

LDA #$4F

STA TALO

LDA #$C3

STA TAHI

LDA #199

STA TBLO

LDA #00

STA TBHI

LDA #$49

STA CRB

LDA #$01

STA CRA

LDA #$02

BIT ICR

BEQ WAIT

CLI

RTS
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12/24 PIN EDGE CONNECTOR

GND

+ 5V

RESET

CNTI

SPI

CNT2

SP2

PC

PA3

9 VAC

9 VAC

GND

GND

FLAG

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA2

GND

1

2

o
o

A
H

5

6

7
f

8

Q

10

11

12

A
M

Q
D

C

D

E

F

H

I

K

1
L

M

N

Figure 12-18. Pin diagram of the Commodore 64 user port.
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Figure 12-19. Photograph of the edge connector to access the user port.

+ 5V

TOP VIEW

USER PORT

Figure 12-20. Diagram of a circuit to produce pulses using a mechanical switch.

The switch is a STDP (single-throw, double-pole) type.

Example 12-8. Counting External Pulses

Object: Wait in a loop until nine positive pulses are applied to the CNT pin

on CIA #2.

10 •

11

12

13

14

15

16

17

18

19

20 WAIT

21

22

23

SEI

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

BIT

BEQ

CLI

RTS

#$7F

ICR

#08

TBLO

#00

TBHI

#$29

CRB

#$02

ICR

WAIT

;DISABLE SYSTEM INTERRUPTS.

;DISABLE INTERRUPTS FROM CIA #2.

;TB COUNTS 8 PULSES ON

;THE CNT PIN.

;SET UP TB AND START IT.

;MASK ALL BUT TIMER B FLAG.

;LOGICAL AND WITH ICR.

;WAIT FOR TIMER FLAG TO BE SET.

;ENABLE INTERRUPTS.

cooo

C001

C003

C006

C008

C00B

C00D

C010

C012

C015

C017

C01A

C01C

C01D

78

A9

8D

A9

8D

A9

8D

A9

8D

A9

2C

F0

58

60

7F

0D

08

06

00

07

29

OF

02

0D

FB

DD

DD

DD

DD

DD
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C. A counting/timing application

We conclude this section on the 6526 CIA counter/timers with a versatile

counting/timing program. The program can be used to measure the time T

it takes forN pulses to occur on the CNTpin of the CIA. Refer to Figure 12-21

for a diagram of the T and N parameters. The pulse train pictured in Figure

12-21 can have either a square waveform or a rectangular waveform. Although

we have pictured periodic waveforms, the pulses can arrive at random inter

vals, as they do in the case of counting radioactive events or people moving

through turnstiles. In the case of a periodic waveform, the parameter of in

terest is the frequency of the pulses, that is, at what rate do they occur. If the

number of pulses occurring in a time T is N, then the frequency f is given by

the formula

f = N/T

-TIME INTERVAL TO BE MEASURED-

\
/

ZEROTH

EVENT

\
/

FIRST

EVENT

\

/

SECOND

EVENT

\ EVENT

Figure 12-21. Timing diagram for the versatile counting/timing program in

Example 12-9.

Frequency counting has many scientific and engineering applications. With

voltage-to-frequency (V/F) and temperature (T/F) converters, a frequency-

counting program can be used to measure voltage and temperature.

Refer again to Figure 12-21. If N = 1, then the time T between two pulses

is obtained. The switch and the circuit shown in Figure 12-21 produce a

positive pulse each time the switch is changed from its NC to its NO posi

tion. Thus, the switch and the program can be used to make a stopwatch.

Another circuit that maybe used with this program is shown in Figure 12-22.

A positive pulse on the CNT pin occurs whenever the light to the photo-

transistor is interrupted. Thus, you can measure the time between successive

interruptions of the light shining on the phototransistor. For example, if a pen

dulum is swinging back and forth between the light source and the photo-

transistor, then, with N = 2, the program will measure the period of the pen

dulum. For another example, if two flags are mounted a distance L apart on
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a moving object, then successive interruption of the light beam by the flags

allow you to measure the time T for the object to move a distance L. Since

the speed ofthe object is L/T, the circuit in Figure 12-22 canbe used to measure

the speed of an object.

+ 5V

CNT

7 74C14

SCHMITT

TRIGGER
GND

-1
TOP VIEW

Figure 12-22. Diagram of a circuit that produces a positive pulse each time the

light to the phototransistor is interrupted. The FPT-100 phototransistor is

available from Radio Shack stores.

The assembly-language program to make these measurements is listed in

Example 12-9. Here is how the program works. $0001 is stored in Timer B,

and it is operated in its external pulse-counting mode. In this mode, it counts

pulses on the CNT pin accessed at the user port. The program loops until the

first pulse occurs and the counter decrements to $0000.

At this instant, TimerA is started in its free-running mode. The IRQ inter

rupts from TimerA are also enabled. TimerA counts system clock pulses that

occur at a precise and constant rate, namely, 1.022727MHz. An interrupt oc

curs every 65,536 clock cycles. Each time an interrupt occurs, a two-byte

counter is incremented in the interrupt routine. Thus, the number of inter

rupts, plus the information in the TimerA registers, determine the time that

has elapsed since the first pulse occurred on the CNT pin.

The number of pulses to be counted, N, is loaded into Timer B. When it

decrements to zero, N pulses have been counted and both timers are stopped.

The number ofdock cycles since TimerAwas last started is stored in memory,

as well as the total number of interrupts.

Study the program and the comments in Example 12-9 in connection with

this discussion and you will see how the program works.

The best way to use the program in Example 12-9 is to call it from a BASIC

program that performs some of the arithmetic needed to convert clock cycles

into a time expressed in seconds. The program in Example 12-10 illustrates

how this is accomplished. On line 20 you enter the number of events to be

counted. If you are performing a stopwatch-type experiment, then N = 1.

The timer is started with the zero-eth event and stopped with the first event.

If you wish to measure the time interval associated with 2,000 pulses, then

enter 2,000 for N. The numberN is converted into two bytes andPOKEd into
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memory locations for the assembly language subroutine. The routine in Ex

ample 12-9 is called on line 50 of Example 12-10. The time calculations are ac

complished by lines 60 through 100, and the result is printed on line 110.

Example 12-9. A Precision Timing/Counting Program

Object: Use Timer A to measure the time T it takes for N pulses to occur on

Timer B.

1 ;EXAMPLE 12-9

2 CRA

3 TALO

4 TAHI

5 ICR1

6 ICR2

7 CRB

8 TBLO

9 TBHI

10 TIME

11 NBLO

12 NBHI

13

14

15

EQU $DC0E

EQU $DC04

EQU $DC05

EQU $DC0D

EQU $DD0D

EQU $DD0F

EQU $DD06

EQU $DD07

EQU $FD

EQU $FB

EQU $FC

EQU $C000

;

;IRQ INTERRUPT

16 IRQRTN INC +TIME

17

18

19 BR1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
A Q4o

49

50 WAIT

51

52

53

54

55

56 .

57

58

BNE BR1

INC +TIME+1

LDA ICR1

PLA

TAY

PLA

TAX

PLA

RTI

;INITIALIZATION

SEI

LDA #$00

STA CRA

STA CRB

STA $0314

LDA #$C0

STA $0315

LDA #$81

STA ICR1

LDA #$FF

STA TALO

STA TAHI

LDA #00

STA TBHI

STA +TIME

STA +TIME+1

LDX #$01

STX TBLO

LDY #$31

CLI

STY CRB

LDA TBLO

BNE WAIT

STX CRA

STA CRB

LDA +NBLO

STA TBLO

LDA +NBHI

STA TBHI

STY CRB

ROUTINE.

;CLEAR IRQ FLAG.

;RESTORE REGISTERS.

ROUTINE.

;DISABLE SYSTEM INTERRUPTS.

;STOP TIMERS.

;SET UP IRQ VECTOR.

;ENABLE INTERRUPTS FROM TIMER A.

;PROVIDE INTERRUPTS EVERY

;.65,536 ($FFFF + 1) CLOCK CYCLES.

;CLEAR TWO BYTE INTERRUPT

fCOUNTER.

;BYTE FOR CRA TO START TIMER A.

;BYTE FOR CRB TO START TIMER B.

;ENABLE INTERRUPTS FROM TIMER A.

;START TIMER B.

;HAS FIRST PULSE OCCURRED?

;NO, WAIT FOR THE FIRST COUNT.

;START TIMER A.

;STOP TIMER B, THEN

;RELOAD TIMER B.

; RESTART TIME'R B.

DC0E

DC04

DC05

DC0D

DD0D

DD0F

DD06

DD07

00FD

00FB

00FC

cooo

cooo

C002

C004

C006

C009

C00A

COOB

COOC

C00D

C00E

COOF

C010

C012

C015

C018

C01B

C01D

C020

C022

C025

C027

C02A

C02D

C02F

C032

C034

C036

C038

C03B

C03D

C03E

C041

C044

C046

C049

C04C

C04E

C051

C053

C056

E6

DO

E6

AD

68

A8

68

AA

68

40

78

A9

8D

8D

8D

A9

8D

A9

8D

A9

8D

8D

A9

8D

85

85

A2

8E

AO

58

8C

AD

DO

8E

8D

A5

8D

A5

8D

8C

FD

02

FE

OD

00

OE

OF

14

CO

15

81

OD

FF

04

05

00

07

FD

FE

01

06

31

OF

06

FB

OE

OF

FB

06

FC

07

OF

DC

DC

DD

03

03

DC

DC

DC

DD

DD

DD

DD

DC

DD

DD

DD

DD
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59

60 BR2

61

62 BR3

63

64

65

66

67

68

69

70

71

72

LDA TBHI

BNE BR2

LDA TBLO

BNE BR3

STA CRA

STA CRB

LDA TALO

EOR #$FF

STA +NBLO

LDA TAHI

EOR #$FF

STA +NBHI

RTS

;WAIT FOR TIMER TO REACH ZERO.

;WAIT FOR TIMER TO REACH ZERO.

;STOP TIMER A.

;STOP TIMER B.

;READ TIMER A LOW BYTE.

;SUBTRACT FROM $FF.

;STORE IT.

;READ TIMER A HIGH BYTE.

;SUBTRACT FROM $FF.

;STORE IT.

C059

C05C

C05E

C061

C063

C066

C069

C06C

C06E

C070

C073

C075

C077

AD

DO

AD

DO

8D

8D

AD

49

85

AD

49

85

60

07 DD

FB

06 DD

FB

0E DC

OF DD

04 DC

FF

FB

05 DC

FF

FC

Example 12-10. A BASIC Routine to Call the Subroutine in

Example 12-9

0 REM EXAMPLE 12-10

5 REM PRECISION COUNTING/TIMING PROGRAM

10 PRINT "INPUT THE NUMBER OF EVENTS."

15 PRINT "THIS NUMBER CANNOT EXCEED 65535."

20 INPUT N

30 NHI=N/256:NLO=NAND255

40 POKE 251,NLO:POKE 252,NHI

50 SYS 49167

60 A=PEEK(251)+256*PEEK(252)

70 B=65536*PEEK(253)+A

80 B=B/1022727

90 D=16777216/1022727*PEEK(254)

100 T=D+B

110 PRINT "THE TIME IS ";T;" SECONDS."

120 GO TO 40

If you are measuring frequency, the program in Example 12-10 should be

modified slightly. We have illustrated this in Example 12-11. Suppose you

are measuring a frequency of about 1,000 Hz. If you enter a number near 1,000,

thenyou will get a reading about once every second. The program will print

the frequency and return to measure it again.

Example 12-11. A BASIC Program to Measure Frequency

Using the Routine in Example 12-9

0 REM EXAMPLE 12-11

5 REM FREQUENCY COUNTING PROGRAM

10 PRINT "INPUT THE NUMBER OF CYCLES"

20 PRINT "NOT TO EXCEED 65535."

30 INPUT N

40 NHI=N/256:NLO=N AND 255

50 POKE 251, NLO:POKE 252, NHI

60 SYS 49167

70 A=PEEK(251)+256*PEEK(252)

80 B=65536*PEEK(253) + A

85 B=B/1022727

90 D=16777216/1022727*PEEK(254)

100 F=N/(B+D)

110 PRINT "THE FREQUENCY IS ";F;" HZ."

120 GO TO 50
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Use the stopwatch circuit in Figure 12-20 to test Examples 12-9 and 12-10.

To test the programs in Examples 12-9 and 12-11, use a square-wave func

tion generator connected between a GND pin and the CNT pin on the user

port. If you do not have a function generator, you can construct the simple

square wave generator whose circuit is shown in Figure 12-23.

555

PIN DIAGRAM

+ 5V

1

4.7KQ|

3.1pF=

7

6

■

■

8 4

555 TIMER

_J2 1

3

5

CNT

GND

-2

TOP VIEW

USER PORT

Figure 12-23. Diagram of a circuit to produce a square wave output at a fre

quency of approximately 1,000 Hz.

The maximum time interval that can be measured is approximately one

hour. The uncertainty of any time measurement less than 65,535*dock cycles

is approximately 10 dock cydes, while the uncertainty of the measurement

is less than 100 dock cydes for time intervals longer than 65,535 dock cydes.

The reason for the decreased precision for the longer intervals is that it is im

possible to tell where in the interrupt routine the last pulse occurred, and the

interrupt routine takes between 50 and 75 dock cydes. Unless you are working

for the National Bureau of Standards, this program offers suffident precision

for most of your measurements. The maximum pulse rate that can be

measured is approximately 50,000 Hz.

This completes our formal discussion of the 6526 CIA. We have already

briefly discussed the time-of-day (TOD) dock in Chapter 7, andwe will discuss

it in more detail in the exercises.

Ifyou are interested in expanding yourknowledge ofinput/output functions

and interfacing your computer to the outside world, here are some useful

references. Although they do not refer specifically to the Commodore 64, these

are useful books for anyone who has an interest in computer hardware. We

have listed them in the order of their usefulness, according to our judgment.

Programming & Interfacing the 6502, With Experiments. Marvin L. De Jong. In

dianapolis, Indiana: Howard W. Sams & Co., Inc., 1980.
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Interfacing Microcomputers to the Real World. Murray Sargent III and Richard L.

Shoemaker. Reading, Massachusetts: Addison-Wesley, 1981.

Programming a Microcomputer. CaxtonC. Foster. Reading, Massachusetts: Addison-

Wesley, 1978.

TRS-80 Interfacing Book 2. J.A. Titus, C.A. Titus, D.G. Larsen. Indianapolis, Indiana:

Howard W. Sams & Co., Inc., 1980.

MicrocomputerAnalog Converter Software &Hardware Interfacing. J.A. Titus, C.A. Titus,

D.G. Larsen. Indianapolis, Indiana: Howard W. Sams & Co., Inc., 1978.

Microcomputer Interfacing. Bruce A. Artwick. Englewood Cliffs, NewJersey: Prentice-

Hall, 1980.

V Summary

The 6526 complex interface adapter has two I/O ports, two counter/timers,

a serial port, and a time-of-day timer. An input port is used to transfer infor

mation from the outside world to the microcomputer. Anoutput port transfers

information from the microcomputer to the outside world. These I/O ports

typically consist of eight pins, allowing eight bits of information to be transfer

red simultaneously. As far as the programmer is concerned, an I/O port is

simply another location in memory. This location is read for an input opera

tion, and information is written to this location for an output operation.

Associated with each I/O port on the CIA is a data-direction register. The

DDR is used to determine whether an I/O pin is going to be used for input

or for output purposes. A one in a bit of the DDR makes the corresponding

I/O pin an output pin; a zero in a bit of the DDR makes the corresponding

I/O pin an input pin.

In almost all I/O operations, it will be necessary to have some knowledge

about the hardware and electronic circuitry that is connected to the I/O port.

Consult some of the references provided in the chapter to acquire this

knowledge.

The 6526 CIA has two counter/timers. These integrated circuits are most

frequently used to provide programmable delays without having to write soft

ware delay loops. A number is written to the counter/timer, after which it is

decremented at a rate determined by the system clock or an external clock.

When the counter/timer decrements through zero (underflows) a flag is set

in a register to signal this event. The counter/timer can also be programmed

to produce an interrupt when an underflow occurs. The counter/timers are

also used to make precision time and frequency measurements.

VI. Exercises

The programming exercises will focus on the TOD clock on the 6526 CIA.

Refer to Table 12-4 for the memory locations of the TOD clock. The time in
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each register is a binary-coded decimal (BCD) number. Thus, in the tenths-

of-seconds register it is only the low nibble that contains any information,

which will be a number from zero to nine.

Table 12-4.

Register

Tenths-

of-seconds

Seconds

Minutes

Hours

Complex interface adapters time-of-day clock registers.

7

0

0

0

PM

6

0

S6

M6

0

5

0

S5

M5

0

Bits

4 3

0 T3

S4 S3

M4M3

H4 H3

2

T2

S2

M2

H2

1

Tl

SI

Ml

HI

0

TO

SO

MO

HO

Address

CIA#1

$DC08

$DC09

$DC0A

$DC0B

CIA#2

$DD08

$DD09

$DD0A

$DD0B

When the number in the tenths-of-seconds register increments from nine

to zero, the "carry" moves into the seconds register. Bits SO through S3 iden

tify the units of seconds, that is, the number of seconds from zero to nine. Bits

S4 through S3 identify the tens of seconds, a digit from zero to five.

When the seconds register increments from 59 to 00, the carry moves into

the minutes register. The minutes register works exactly like the seconds

register. It counts to 59 and then a carry moves into the hours register.

The hours register counts from zero to 12. ThePMflag, bit seven in the hours

register, is set when the time moves from 1159 59.9 to 00 00 00.0.

Two other bits in two other registers are important in controlling the TOD

clock. To set the time, you write to the TOD registers described in Table 12-4

with CRB7zero. Refer to Figure 12-12 for a diagram of the CRB register. To set

the TOD clock alarm, you write to the TOD registers described in Table 12-4

with CRB7one. The alarm "sounds" by setting ICR2, bit two in the interrupt

control register (refer to Figure 12-16). Of course, you can also enable an in

terrupt with this alarm bit.

The TOD clock is started by writing to the tenths-of-seconds register. The

approach for setting and starting the TOD clock was given in Example 7-7.

Write the desired numbers to the hours, minutes, seconds, and tenths-of-

seconds registers, in that order, with CRB7 = 0. To set the alarm, write the

desired time to the hours, minutes, seconds, and tenths-of-seconds registers

with, CRB7 = 1.

To read the clock, read the hours, minutes, seconds, and tenths-of-seconds,

in that order. The clock latches when the hours register is read so that you

do not miss a carry. The clock remains latched until the tenths-of-seconds

register is read. The clock continues to run even when it is latched.

1. Begin by writing a subroutine to start the clock with zeros in all of the registers.

2. Next, write a subroutine to read the time and output it to the video monitor.

Refer to Example 7-7 if you have difficulty. Extend your program to display

the time continuously.
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3. Write a routine to set the alarm. Remember, CRB7 must be one to write to the

alarm registers, which have the same addresses as the dock registers. Use the

CRB in the CIA you have chosen to use for the TOD clock.

4. Use the routines you have written to start the clock at 00 00 00.0 and set the

alarm for 00 0130.0 (that is, a minute and 30 seconds after the dock starts). Add

aprogram segment that waits in a loop for the alarm to go off, and then returns

to BASIC. You need to test the ICR2 bit in the interrupt-control register in the

CIA you have chosen to use for the TOD clock. Test your programs by start

ing the clock and waiting for a minute and a half until the setting of the alarm

bit allows your program to return to BASIC via an RTS instruction.

5. Here is how you can make a stopwatch using the TOD clock. Write a program

segment that waits in a loop until one of the joystick bits is switched to zero

with a joystick. Refer to the examples in this chapter to see how to read the

joystick input bits.

When this joystick bit is zero, the program should continue, and it should

set the TOD dock to 00 00 00.0 and start it.

Next, wait in another loop until another joystick input bit switches to zero,

then read the clock and output the time using either the subroutine you wrote

or Example 7-7.

6. Write a program to output the TOD clock time each time the joystick switches

a bit to zero.

7. Your last exercise before you can call yourself an assembly-language program

mer is to discover the only instructionwe have not yet mentioned in this book

and learn how to use it. We have left the simplest instruction until last.



Decimal, Binary, and

Hexadecimal Number

Systems

I. Introduction

The concept of number is as old as human culture, and different cultures

have found different ways to express numbers. A specific scheme for using

symbols to represent numbers is called a numeration system. Even within a

culture, different numeration systems may be useful to express the same

number. That is the case in our culture where we use a base-ten place value

(decimal) numeration system for most applications, but we use a base-two place

value (binary) numeration system for many computer applications.

By holding up various numbers of fingers, a human being can easily sym

bolize ten unique states. Each state symbolizes a counting number from one
to ten. This fact is very likely the reason for our familiar base-ten number

system. (With more complex symbolism, these same ten fingers can be used

to symbolize many more numbers than ten.) The evolution of numeration

has also given us ten unique numerals (or digits):

0,1, 2, 3, 4, 5, 6, 7, 8, 9

These ten unique symbols can be grouped together to express many more

than ten numbers. Although you are familiar with using numbers in this way,

it will be important to understand exactly how this scheme works. We will

describe it in detail below.

The electronic components in a microcomputer are inherently two-state

rather than ten-state devices. When a two-state device is used to express

a number, only two numerals are available, and the numeration system

is called a base-two system or a binary numeration system. When writing

numbers in this system, it is customary to use the numerals "0" and "1"

for zero and one, respectively.

259
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Within the microcomputer itself, the numerals 0 and 1 have no meaning.

The microprocessor and the other components of the microcomputer system

cannot read numerals. However, engineers and computer scientists who

design computer systems agree that a "0" will be represented by a voltage of

zero volts and a "1" will be represented by a voltage of five volts. As far as

the microcomputer is concerned, these voltages are numerals. Regardless of

whether numbers are represented with two voltages or two written symbols

("0" and "I")/ the numeration system is a base-two (binary) system. Since

the microcomputer is built around a binary concept, and since you want to

program it in its native binary language, it will be important for you to be pro

ficient with binary numbers, and to have the ability to translate from decimal

numbers to binary numbers.

The smallest unit of information in the microcomputer is the binary digit,

which will represent either zero or one. The word "bit" is a contraction of

the words "binary" and "digit/' Thus, the basic unit of information in a com

puter is a bit. Here is an example of a bit:

Each memory location in the microcomputer stores eight bits. Thus, infor

mation is stored in the form of eight-bit binary codes (or numbers). An eight-bit

code is called a byte. Here is an example of a byte:

00111010

Information is not only stored in eight-bit codes, essentially all of the opera

tions of the microprocessor are performed eight bits at a time. The Commodore

64 is, therefore, an eight-bit microcomputer.

Eight-bit codes are difficult to remember and write. A much more conve

nient scheme is to use a base-sixteen place value numeration system, called a

hexadecimal system. A base-sixteen system requires 16 numerals. We will use

the numerals 0 through 9 for the first ten hexadecimal numerals, and the let

ters A, B, G, D, E, and F for the remaining six hexadecimal numerals. As you

will see, in the hexadecimal system each hexadecimal numeral represents four

bits of binary data. Thus, each byte of information stored in the computer can

be represented with two hexadecimal numerals. (Throughout this appendix,

we will refer to these as hexadecimal digits rather than hexadecimal numerals).
The byte we illustrated above in binary form is expressed as

$3A

in hexadecimal. The "$" prefix is traditionally used to indicate a hexadecimal

number.

The Commodore 64 microcomputer and many other microcomputers are

designed so that each memory location is identified by a binary number with

16 binary digits (a 16-bit binary number). This number is called the address of

the memory location. Here is an example of a 16-bit address:

1001101010111100
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It is inefficient to express a number in its 16-bit binary form. It is much more

efficient and convenient to use four hexadecimal digits to identify the address

of a memory location. The 16-bit address listed above is represented by

$9ABC

in hexadecimal. In decimal, this address is the number

39612

It will be important for you to learn to move easily between the three represen

tations of a number, decimal (base ten), binary (base two), and hexadecimal

(base sixteen). The purpose of this appendix is to help you on your way.

Before studying numbers in more detail, it is important to realize that

numbers are used in at least three different ways:

• Numbers are used to indicate quantity.

• Numbers are used to indicate order.

• Numbers are used as codes for purposes of identification.

The use of a number to express quantity is familiar to all of us. Howmanypages

are there in this book? The number 65,536 indicates the quantity of memory

locations in your microcomputer. The houses in a block are ordered by their

addresses. The memory locations in a microcomputer are also ordered by their

addresses. You are identified by your social security number, a nine-digit code.

Postal zip codes and telephone numbers are also used as identification codes.

In some cases, a number serves several purposes. Your house address not

only identifies your house, it orders it on the street where you live. Microcom

puters use numbers in each of the three ways just described.

II. Decimal Numbers

Decimal numbers are symbolized by a sequence of digits. It will be useful

to dissect a decimal number, Such a dissection is shown in Figure A-l. Each

digit has a face value and a place value. Face values run from zero to nine, and

these are learned at an early age.

The place value of a digit is determined by the position of the digit in the

sequence of digits. The rightmost digit, called the least-significant digit, has

a place value of one. The next digit to the left has a place value of ten, the next

has a place value of one hundred, and so on. Thus, the place values show

the following pattern:

10000,1000,100,10,1

which may also be written as

104,103,102,101,10°

If each digit in the sequence is given a digit number, starting with zero for the

digit on the right and counting upward, then the place value is the base raised

to a power (exponent) equal to the digit number. Thus, the least-significant
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digit, the Oth digit, has a place value of 10°. Digit one has a place value of 101,

and so on. Thus, the number 2,598 may be written in an expanded form as

follows:

2598 = 2*103 + 5*102 + 9*10* + 8*10°

This shows that the value of the number is foundby multiplying the face value

of each digit by its place value and then adding these results. Howwould you

expand the decimal number 54231?

DIGIT NUMBER 3

DIGIT NUMBER 2

DIGIT NUMBER 1

DIGIT NUMBER 0

2 5 9 8= 2000 + 500 + 90 + 8

FACE VALUES

PLACE VALUES

DIGIT NUMBER

BASE

Figure A-1. Dissection of the decimal number 2,598.

III. Binary Numbers

The essential difference between binary numbers and decimal numbers is

in the base. Binary numbers have a base of two. Only two face values are

allowed, namely, zero and one. The base of a number other than a decimal

number is sometimes indicated by a subscript. Thus,

101L.
two

is a base two or binary number. This particular binary number is dissected in

Figure A-2. In the binary numeration system, the place values are 2°, 21,22, 23

and so on, corresponding to bit numbers 0,1,2, and 3. Compare Figures A-1

and A-2. A brief table of powers of two is useful; one is given in Table A-1.

A binary number can also be written in an expanded form. Thus,

1*23 + 0*22 + l*2a + 1*2°

I
= 2*

= 2

1000 +

f

1
MO3 +

t

\
5

5*

{

MOO + 9

♦

\
102 + 9*

t

M0 H

t

\
101 -f

t

h 8*

■ 8'

1

f

\
M0°

t

or

1*8 + 0*4 + 1*2 + 1*1
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Table A-l. Powers of 2.

n

0

1

2

3

4

5

6

7

8

1

2

4

8

16

32

64

128

256

n

9

10

11

12

13

14

15

16

17

2h

512

1024

2048

4096

8192

16384

32768

65536

131072

1two

BIT 3

BIT 2

BIT1

BITO

= 1*

= 1*

8 +

23 H

f

1
0*

h 0

4

I

\
*2

+ 1

r

*2

|

1

T

+ 1

{

*21 ■

t

*1

4

f 1

t
*2°

t

= 8.+0 + 2 + 1 = 11 TEN

FACE VALUES

PLACE VALUES

DIGIT NUMBER

BASE

Figure A-2. Dissection of the binary number 1011.

If it is clear from the context of the discussion that the base is two, then the

subscript "two" is dropped. Assembly-language programmers frequently use

a percent sign (%) rather than a subscript to designate binary numbers. Thus,

UOl^-%1101

The expanded form of a binary number that we have just described and the

diagram in Figure A-2 suggest a technique for converting a binary number

to decimal. Multiply the face value (0 or 1) of each bit by its place value and

add the results. Thus,

%11000110 = 1*128 + 1*64 + 0*32 + 0*16 + 0*8 + 0*4 + 1*2 + 0*1

= 128 + 64 + 4 + 2

- 198ten

It is simpler to organize this work starting with the least-significant bit. Thus,

%11000110 = 0*1 + 1*2 + 1*4 + 0*8 + 0*16 + 0*32 + 1*64 + 1*128
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There are several techniques for converting a decimal number to a binary

number. Here is the one that I like:

• Use Table A-l to find the largest power of two that will divide the given decimal

number. Place a one in the corresponding bit position.

• Divide the decimal number by this power of two and note the remainder.

• Divide the remainder of the first result by the next largest power of two. Put

the dividend, 0 or 1, in the next lower bit position.

• Continue dividing by successively smaller powers of two until you finish by

dividing by one.

Example A-l illustrates this process.

Example A-1. Convert 207 to a Binary Number

Solution: Refer to Table A-l to find that the largest power of two that will

divide 207 is 27, or 128. Thus, bit seven will have a one in it. Now perform suc

cessive divisions as follows:

128(207
128

79

Thus, 207 =

64(79
64

15

%11OO1

0

32 (15
0

15

0

16 (15
0

15

8 (15
8

7

1

4

3

1

2(3" :
2

1

1

lfT
l

0

When numbers are used to indicate quantity, they do not ordinarily have

leading zeros. You would not say you bought 0025 pounds of nails; instead,

you would drop the leading zeros and say you bought 25 pounds of nails.

When numbers are used as codes, they may have leading zeros. Postal zip

codes, for example, have leading zeros. All of the codes in a microcomputer

are of a fixed length, eight bits, and they mayhave leading zeros. If an eight-bit

code is interpreted as a number, representing a quantity, then the leading

zeros are disregarded.

As we have pointed out, the fixed length of the codes used by the micro

computer is eight bits or one byte. To identify memory locations, the

microcomputer uses a fixed-length 16-bit code called the address of the memory

location. The 16-bit address is frequently described in terms of two bytes. The

least-significant byte is called the low-order byte of the address, or address law

(ADL). The most-significant byte is called the high-order byte of the address,

or address high (ADH). For example, in the 16-bit address

1100001100111100

the byte

11000011

is the ADH of the address, and the byte

00111100

is the ADL of the address.
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A four-bit binary number is sometimes called a nibble. This is a useful idea

when translating from binary to hexadecimal. A byte may be divided into a

most-significant nibble (high-order nibble) and a least-significant nibble (low-

order nibble). The byte

11110000

has a high-order nibble that is

1111

and a low-order nibble which is

0000

Some writers prefer to spell nibble as nybble.

IV. Hexadecimal Numbers

The sixteen hexadecimal numerals and their binary and decimal equivalents

are listed in Table A-2. With continued use of hexadecimal and binary

numbers, this table will eventually be committed to your memory. The im

portant thing to notice in Table A-2 is that four bits of information are

represented with one hexadecimal numeral. Thus, a byte is described with

two hexadecimal numerals and a 16-bit address is described with four hex

adecimal numerals.

Table A-2. Hexadecimal, binary, and decimal equivalents.

Hexadecimal Number Binary Number Decimal Number

(Base Sixteen) (Base Two) (Base Ten)

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A % 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

10 10000 16

Converting from binary to hexadecimal proceeds as follows:

• Group the binary number into nibbles.

• Using the table or your memory, convert each nibble into a hexadecimal digit.
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For example,

01011010 - 01011010 - $5A

and

1111111011011100 - 11111110 11011100 = $FEDC

To convert from hexadecimal to binary, reverse the process. Thus,

$6E = 01101110 - 01101110

and

$89AB - 100010011010 1011 = 1000100110101011

To convert from hexadecimal to decimal, expand the hexadecimal number

as follows:

$6E - 6*161 + 14*16° = 6*16 + 14*1 - 110

or

$89AB = 8*163 + 9*162 + 10*16* +11*16°

giving

$89AB = 8*4096 + 9*256 + 10*16 + 11*1 = 35243

To convert from decimal to hexadecimal, divide the decimal numberby

16 and note the remainder. Divide the quotient of that result by 16 and

note the remainder. Continue until the quotient is zero. The first remain

der becomes the least-significant hexadecimal digit, the last remainder

becomes the most-significant hexadecimal digit. Example A-2 illustrates

the process.

Example A-2. Convert 45678 to Hexadecimal

Solution:

2854 178 11 0

16145678 16<r2854 16fl78 16 FTF
45664 2848 176 _0

14 ($E) 6 2 11 ($B)

Therefore, 45678 = $B26E

Some useful patterns between binary, hexadecimal, and decimal numbers

may emerge in your mind ifyou study Table A-3. In this table, we have listed

a variety ofbinary numbers and their hexadecimal and decimal equivalents.
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Table A-3. Some binary,

Binary

Number

0000

0001

0010

0011

1000

1001

1010

1011

1110

1111

00010000

0010 0000

0100 0000

1000 0000

10001000

1010 0000

1100 0000

1110 0000

11111111

00010000 0000

0010 0000 0000

00110000 0000

0100 0000 0000

1000 0000 0000

00010000 0000 0000

0001111111111111

0010 0000 0000 0000

0111111111111111

1000 0000 0000 0000

1100 0000 0000 0000

1111111111111110

mi mi mi mi

hexadecimal

Nibble

Nibble

Nibble

Nibble

Nibble

Nibble

Nibble

Nibble

Nibble

Nibble

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

3 nibbles

3 nibbles

3 nibbles

3 nibbles

3 nibbles

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

and decimal numbers.

Hexadecimal

Number

$00

$01

$02

$03

$08

$09

$0A

$0B

$0E

$0F

$10

$20

$40

$80

$88

$A0

$C0

$E0

$FF

$0100

$0200

$0300

$0400

$0800

$1000

$1FFF

$2000

$7FFF

$8000

$C000

$FFFE

$FFFF

Decimal

Number

0

1

2

3

8

9

10

11

14

15

16

32

64

128

136

160

192

224

255

256

512

768

1024

2048

4096

8191

8192

32767

32768

49152

65534

65535
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V. Problems

1. Convert these binary numbers to hexadecimal and decimal numbers, then con

vert your decimal result back into hexadecimal and binary to check both

calculations:

00001001

10000000

01000000

00100000
00010000

00001000

11000000

11000011

00111100

11111111

2. Convert these hexadecimal numbers to binary numbers:

$01

$05

$0F

$50

$5F

$A7

$6F

$FF

3. Convert these hexadecimal addresses to binary and decimal:

$0123

$0700

$ABCD

$FFFF

4. Convert these decimal numbers to hexadecimal numbers:

1024

32768

49152

57343



The Computer Assisted

Instruction Program

This a^

used for the exercises in Chapters 4, 5, and 7.

1 OPA

2 OPB

3 TEMP

4 IOINIT

5 CHROUT

6 GETIN

7 GETTWO
o .
O i

9

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$FB

$FC

$02

$FF84

$FFD2

$FFE4

$C100

10 ;SUBROUTINE GETTWO

11 GETTWO

12

13

14

15

16 GETONE

17

18

19

JSR

LDA

JSR

JSR

STA

JSR

STA

RTS

IOINIT

#$0D

CHROUT

RDBYTE

+OPA

RDBYTE

+OPB

20 SUBROUTINE RDBYTE

21 RDBYTE

22

23

24

25

26

27

28

29

30

31

32

33 WAIT

34

35

36

37

38

39

40

41

JSR

CMP

BEQ

STA

JSR

LDA

JSR

ASL

ASL

ASL

ASL

STA

JSR

CMP

BEQ

PHA

JSR

PLA

JSR

ORA

STA

GETIN

#00

RDBYTE

+TEMP

CHROUT

+TEMP

ASHEX

A

A

A

A

+TEMP

GETIN

#00

WAIT

CHROUT

ASHEX

+TEMP

+TEMP

;STORAGE FOR ONE OPERAND.

;STORAGE FOR 2ND.OPERAND.

TEMPORARY STORAGE.

- GETS TWO BYTES.

;INITIALIZE I/O DEVICES.

;CARRIAGE RETURN.

;GET A HEX NUMBER.

;STORE IN OPERAND A.

;GET A SECOND HEX NUMBER."
;STORE IN OPERAND B.

;GET A KEY CODE.

;IS CODE ZERO?

;YES, TRY AGAIN.

;STORE CODE HERE.

;OUTPUT IT TO THE SCREEN.

;GET KEY CODE AGAIN.

;CONVERT IT TO HEX.

;SHIFT TO HIGH ORDER NIBBLE.

;SAVE THE HIGH NIBBLE.

;GET 2ND KEY CODE.

;IS IT ZERO?

;YES, TRY AGAIN.

;SAVE CODE ON THE STACK.

;OUTPUT IT TO THE SCREEN.

;GET CODE FROM STACK.

;CONVERT IT TO HEX.

;COMBINE BOTH NIBBLES.

;STORE THE HEX NUMBER.

00FB

00FC

0002

FF84

FFD2

FFE4

C100

C100

C103

C105

C108

C10B

C10D

C110

C112

C113

C116

C118

C11A

cue

C11F

C121

C124

C125

C126

C127

C128

C12A

C12D

C12F

C131

C132

C135

C136

C139

C13B

20

A9

20

20

85

20

85

60

20

C9

F0-

85

20

A5

20

0A

0A

0A

0A

85

20

C9

F0

48

20

68

20

05

85

84

0D

D2

13

FB

13

FC

E4

00

F9

02

D2

02

61

02

E4

00

F9

D2

61

02

02

FF

FF

Cl

Cl

FF

FF

Cl

FF

FF

Cl

269



270 BDThe Computer Assisted Instruction Program

42

43 BACK

44

45

46

47

48

49

50 BR3

51

52

53

54

55

56

57

58

59

60

LDX #06

LDA #$20

JSR CHROUT

DEX

BNE BACK

LDX #08

LDA +TEMP

STA +$97

ASL +$97

LDA #00

ADC #$30

JSR CHROUT

DEX

BNE BR3

LDA #$0D

JSR CHROUT

LDA +TEMP

RTS

61 ;SUBROUTINE ASCII

62 ASHEX

63

64

65

66 BR1

67 BR2

68

69

70 CHROUT

71 DISPLAY

72 DISPLAY

73

74

75

76

77

78

79

80

81 BR4

82

83

84

85

86 BR5

87

88

89

90

91

92

93

94

95

96

97 BR6

98

99

100

101

102 BR7

103

104

105

106

107

108

109

110

111 BR8

112

113

CMP #$40

BCS BR1

AND #$0F

BPL BR2

SBC #$37

RTS

EQU $FFD2

EQU $C16C

PHP

PHA

PHP

PLA

LDX #$08

STA +$FE

PLA

PHA

STA +$02

LDA #$20

JSR CHROUT

DEX

BNE BR4

LDX #08

ASL +$02

LDA #00

ADC #$30

JSR CHROUT

DEX

BNE BR5

LDA #$0D

JSR CHROUT

LDA #$0D

JSR CHROUT

LDX #8

LDA #$20

JSR CHROUT

DEX

BNE BR6

LDX #8

ASL +$FE

LDA #00

ADC #$30

JSR CHROUT

DEX

BNE BR7

LDA #$0D

JSR CHROUT

LDX #08

LDA #$20

JSR CHROUT

DEX

;INSERT 6 SPACES.

;ASCII SPACE.

;OUTPUT SPACE.

;BIT COUNTER.

;GET NUMBER.

;STORE NUMBER HERE.

;SHIFT LEFT INTO CARRY.

;CONVERT TO ASCII.

;OUTPUT IT.

;OUTPUT A

;CARRIAGE RETURN.

•GET THE NUMBER.

;AND RETURN.

TO HEXADECIMAL.

;DIGIT OR LETTER?

;DIGIT, MASK HIGH NIBBLE.

;BRANCH PAST LETTER.

;LETTER, SUBTRACT $37.

;RETURN WITH DIGIT IN A.

;SAVE P ON THE STACK.

;PUT A ON THE STACK.

;SAVE P AGAIN.

;GET P INTO A.

;GET A BACK FROM THE STACK.

;AND PUT IT BACK FOR SAVE KEEPING.

;ASCII SPACE.

;COUNT EIGHT BITS.

;SHIFT BIT INTO CARRY.

;CLEAR A.

;CONVERT BIT TO ASCII.

;OUTPUT IT.

;CARRIAGE RETURN.

;ANOTHER RETURN.

;CONVERT BIT TO ASCII.

;OUTPUT IT.

C13D

C13F

C141

C144

C145

C147

C149

C14B

C14D

C14F

C151

C153

C156

C157

C159

C15B

C15E

C160

C161

C163

C165

C167

C169

C16B

FFD2

C16C

C16C

C16D

C16E

C16F

C170

C172

C174

C175

C176

C178

C17A

C17D

C17E

C180

C182

C184

C186

C188

C18B

C18C

C18E

C190

C193

C195

C198

C19A

C19C

C19F

A2

A9

20

CA

DO

A2

A5

85

06

A9

69

20

CA

DO

A9

20

A5

60

C9

B0

29

10

E9

60

08

48

08

68

A2

85

68

48

85

A9

20

CA

DO

A2

06

A9

69

20

CA

DO

A9

20

A9

20

A2

A9

20

CA

C1A0 DC

06

20

D2 FF

F8

08

02

97

97

00

30

D2 FF

F4

0D

D2 FF

02

40

04

OF

02

37

08

FE

02

20

D2 FF

F8

08

02

00

30

D2 FF

F4

0D

D2 FF

0D

D2 FF

08

20

D2 FF

) F8

C1A2 A2 08

C1A4 06 FE

C1A6 A9 00

C1A8 69 30

C1AA 20 D2 FF

C1AD CA

C1AE DO F4

C1B0 A9 0D

C1B2 20 D2 FF

C1B5 A2 08

C1B7 A9 20

C1B9 20 D2 FF

C1BC CA
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114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135"

136 WAITKY

137

138 LOAF

139

140

141

142

BNE

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR"

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

PLA

PLP

RTS

PHP

PHA

JSR

BEQ

PLA

PLP

RTS

BR8

#'N

CHROUT

#'V

CHROUT

#$20

CHROUT

#'B

CHROUT

I'D

CHROUT

#'I

CHROUT

rz

CHROUT

#'C

CHROUT

#$0D

CHROUT

$FFE4

LOAF

;PRINT N.

;PRINT V.

;PRINT SPACE.

;PRINT B.

;PRINT D.

;PRINT I.

;PRINT Z.

;PRINT C.

;CARRIAGE RETURN.

;GET A BACK AGAIN.

;GET THE P REGISTEF

;SAVE P.

;SAVE A.

;READ THE KEYBOARD.

;WAIT FOR ANY KEY.

;GET A.

;GET P.

C1BD

C1BF

C1C1

C1C4

C1C6

C1C9

C1CB

C1CE

C1D0

C1D3

C1D5

C1D8

C1DA

C1DD

C1DF

C1E2

C1E4

C1E7

C1E9

C1EC

C1ED

C1EE

C1EF

C1F0

C1F1

C1F4

C1F6

C1F7

C1F8

DO

A9

20

A9

20

A9

20

A9

20

A9

20

A9

20

A9

20

A9

20

A9

20

68

28

60

08

48

20

F0

68

28

60

F8

4E

D2

56

D2

20

D2

42

D2

44

D2

49

D2

5A

D2

43

D2

0D

D2

E4

FB

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF
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Table C-1. The 6510 instruction set summary.

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

INSTRUCTIONS

MNEMONIC

ADC

AND

A S L

BCC

B C S

B E Q

B 1 T

B M I

B N E

B P L

B R K

B V C

B V S

C L C

C L D

C L 1

CLV

CMP

C P X

C P Y

DEC

D E X

D E Y

E 0 R

INC

1 N X

1 N Y

JMP

J S R

L D A

OPERATION

A + M ♦ C-»A (4)(1)

AAM-*A (1)

C.-IT Ol-O

BRANCH ON C = 0 (2)

BRANCH ON C = 1 (2)

BRANCH ON Z = 1 (2)

AAM

BRANCH ON N = 1 (2)

BRANCH ON Z^= 0 (2)

BRANCH ON N = 0 (2)

BREAK

BRANCH ON V = 0 (2)

BRANCH ON V = 1 (2)

0-C

0 -D

0-1

A - M

X - M

Y - M

M - 1- - M

X - 1 -X

Y - 1 - Y

AVM-A (1)

M ♦ 1 -M

X ♦ 1 -X

Y ♦ 1 - Y

JUMP TO NEW LOC

JUMPSUB

M-A <1)

IMMEOIATE

OP

69

29

C9

E0

CO

49

A9

n

2

2

2

2

2

2

2

ft

2

2

2

2

2

2

2

ABSOLUTE

OP

6D

2D

0E

2C

CD

EC

CC

CE

4D

EE

4C

20

AD

n

4

4

6

4

4

4

4

6

4

6

3

6

4

ft

3

3

3

3

3

3

3

3

3

3

3

3

3

ZERO PAGE

OP

65

25

06

24

C5

E4

C4

C6

45

E6

A5

n

3

3

5

3

3

3

3

5

3

5

3

ft

2

2

2

2

2

2

2

2

2

2

2

ACCUM

OP

OA

n

2

ft

1

IMPLIED

OP

00

18

D8

58

88

CA

88

t

E8

C8

n

7

2

2

2

2

2

2

2

2

ft

1

1

1

1

1

1

1

1

1

(INO.

OP

61

21

C1

41

A1

n

6

6

6

6

6

0

ft

2

2

2

2

?

(INO).

OP

71

31.

D1

51

B1

n

5

5

5

5

S

Y

ft

2

2

2

2

?
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Table C-l. The 6510 instruction set summary (continued).

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

Z PAGE.X

OP

75

35

16

05

06

55

F6

B5

n

4

4

6

4

6

4

6

4

#

2

2

2

2

2

2

2

2

ABS X

OP

7D

3D

1E

DO

DE

5D

FE

BO

n

4

4

7

4

7

4

7

4

#

3

3

3

3

3

3

3

3

ABS. Y

OP

79

39

09

59

B9

n

4

4

4

4

4

•

3

3

3

3

3

RELATIVE

OP

90

BO

FO

30

00

to

50

70

n

2

2

2

2

2

2

#

2

2

CMCMCMCM

2

2

INDIRECT

OP

6C

n

5

•

3

Z PAGE. Y

OP n

PROCESSOR STATUS

COOES

N V • B 0 I Z C

N V i . . • Z C

... 1 .1 . .

o • •

N • • Z C

N • • • i i Z C

N • • • • • Z •

N • • • • • Z •

MNEMONIC

ADC

AND

A S L

BCC

BCS

B EO

B 1 T

B M 1

B N E

BPL

B R K

B V C

B V S

C L C

C L D

C L 1

C L V

CMP

C P X

C P Y

DEC

0 E X

D E Y

E 0 R

1 N C

1 N X

1 N Y

JMP

J S R

L 0 A
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Table C-1. The 6510 instruction set summary (continued).

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

INSTRUCTIONS

MNEMONIC

L D X

L D Y

L S R

N 0 P

0 R A

P H A

PHP

P L A

P L P

R 0 L

R 0 R

R T 1

R.TS

SBC

SEC

S E D

S E 1

S T A

S T X

STY

TAX

T A Y

T S X

T X A

T X S

T Y A

OPERATION

M-X (1)

M-Y (1)

0 -\t Ql- C

NO OPERATION .

AVM-A

A - Ms S - 1 - S

P-Ms S - 1 -S

S ♦ 1 -S Ms-A

S ♦ 1 -S Ms-P

RTRN INT

RTRN SUB

A - M - C - A 0)

1-C

1 -D

1 - 1

A-M

X-M

Y-M

A-X

A-Y

s-x

X-*A

x-s

Y -A

111 ADD 1 to

<2» ADD 1 TO

ADD2 TO

IMMEDIATE

OP

A2

AO

09

E9

N

N

N1

(3» CARRY NOT :

n

2

2

2

2

•

2

2

2

2

ABSOLUTE

OP

AE

AC

4E

OD

2E

6E

ED

8D

8E

8C

n

4

4

6

4

6

6

4

4

4

4

#

3

3

3

3

3

3

3

3

3

3

ZERO PAGE

OP

A6

A4

46

05

26

66

E5

85

86

84

n

3

3

5

3

5

5

3

3

3

3

#

2

2

2

2

2

2

2

2

2

2

ACCUM

OP

4A

2A

6A

n

2

2

2

•

1

1

1

F PAGE BOUNDARY IS CROSSED

IMPLIED

OP

EA

48

08

68

28

40

60

38

F8

78

AA

A8

BA

8A

9A

98

IF BRANCH OCCURS TO SAME PAGE

IF BRANCH OCCURS TO DIFFERENT PAGE

i BORROW

(4t IF IN DECIMAL MODE. Z FLAG IS INVALID

ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT

n

2

3

3

4

4

6

6

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(IND. )

OP

01

E1

81

n

6

6

6

0

ft

2

2

2

(IND). V

OP

11

F1

91

n

5

5

6

•

2

2

2
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Table C-1. The 6510 instruction set summary (continued).

(Reprinted with permission of Semiconductor Products Division of

Rockwell International)

I PAGE.X A6S X ASS. Y RELATIVE INOIflECT Z PAGE. V
ESSOR STATUS

COOES

OP OP OP OP OP OP
7 6 5 4 3 2 1

N V • B D I Z
MNEMONIC

15 1D

BE

19

B6 Z •

Z •

Z C

LDX

L 0 Y

LSR

N O P

OR A

36 3E

iRESTORED)

Z C

P H A

PHP

PLA

P L P

R O L

76

F5

7E

FD F9

N Z C

-RESTORED)

N V • ' * * Z «3)

1

. • . . i . . .

R O R

R T I

R T S

SBC

SEC

S E D

95

94

9D 99

96

S E I

S T A

STX

STY

TAX

N

T A Y

T S X

T X A

T X S

T Y A

X INDEX X

Y INDEX Y

A ACCUMULATOR

M MEMORY PER EFFECTIVE ADDRESS

Ms MEMORY PER STACK POINTER

+ ADD

SUBTRACT

A AND

V OR

V EXCLUSIVE OR

MEMORY BIT 7

MEMORY BIT 6

NO. CYCLES

NO. BYTES





Glossary
Absolute addressing mode—Addressing mode in which the second and third

bytes of the instruction specifiy the 16-bit address of the operand.

Absolute indexed addressing mode—The address of the operand of the in

struction is determined by adding the number in an index register (X or Y)

to the second two bytes of the instruction.

Accumulator—Eight-bit register in the 6510 microprocessor used to transfer

eight-bit codes or numbers between the microprocessor and memory. It is

also used whenever the microprocessor combines two numbers in addition,

subtraction, or logical operations.

Accumulator addressing mode—The operand of the instruction is the eight-

bit code in the accumulator.

Address—A number used to identify one of the microcomputer's 65,536

memory locations.

Address bus—16-conductor bus connecting the microprocessor to each

memory location or I/O device. Each conductor represents one bit of a 16-bit

binary number called the address.

Addressing mode—The way a 6510 instruction identifies the register or ad

dress of the operand. The addressing mode is the way a 6510 identifies a

destination when a jump or branch instruction is executed.

ADH—The most-significant byte of a 16-bit address.

ADL—The least-significant byte of a 16-bit address.

ADSRenvelope—The waveshape that defines the attack, decay, sustain, and

release parameters associated with a single musical note.

Analog-to-digital converter—Device used to represent an analog quantity

with a number.

ASCII—American Standard Code for Information Interchange. A set of eight-

bit codes used to represent alphanumeric characters, punctuation marks,

and control codes.

Assembler—Computer program that converts an assembly-language pro

gram to a machine-language program.

BASIC interpreter—A machine-language program stored in ROM that car

ries out commands written in BASIC.

Binary coded decimal (BCD)—A set of ten binary codes that represent the

decimal digits 0 through 9.

Bit—Contraction of the words "binary digit." One binary digit is the smallest
quantity of information used in a computer.

279
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Bit-mapped graphics—A technique of displaying information on the video

monitor. Each bit in an 8,000-byte block of memory maps into one pixel on

the screen.

Bit-mapped memory—The 8,000-byte block of memory used for bit-mapped

graphics.

Branch—Modification of the 16-bit program counter by an eight-bit signed

number.

Branch instruction—A 6510 instruction that tests the condition of a flag in

the P register. If the condition is met, an eight-bit signed number is added

to the program counter. Otherwise the program counter increments by one.

Break flag (B)—The break flag in the P register. It is set when a BRK instruc

tion is executed. It is cleared when an IRQ-type interrupt occurs.

Bus—A set of electrical conductors that interconnects all of the components

of a microcomputer system.

Byte—Eight binary digits of information. An eight-bit code.

Carry flag (Q—Flag in the P register that is modified by arithmetic, compare,

rotate, and shift instructions.

Character memory*—A 2K block of memory that contains codes that deter

mine the shape of the characters displayed on the screen.

Character ROM—See "Character memory/7

Clear—Give one or more bits a value of zero.

Code—A set of binary digits that convey information.

Color memory—A 1,000-byte block of memory containing the codes that

determine the colors of the characters on the screen. Color memory is from

$D800to$DBE7.

Compare instruction—An instruction that subtracts a number in memory

from a number in a 6510 register to determine whether the number in the

register is greater than, equal to, or lesser than the number in memory.

Complement—To change each of the bit values of a number.

Complex interface adapter (CIA)—Anintegrated circuit used to interface the

6510 microprocessor to various input/output devices.

Computer programming language—A means by which human beings in

struct a computer to perform tasks.

Condition code—Another name for a flag in the P register.

Control bus—One of three important buses in the microcomputer system.
Includes the read/write line and the clock line.

Counter/timer—An integrated circuit that decrements a number in a register
each time an electrical pulse occurs on a particular pin.

Data—Information represented by eight-bit codes in computer.
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Data bus—Eight-conductor bus used to transfer eight-bit codes between the

microprocessor and memory. Each conductor represents one bit of an eight-

bit code or number.

Decimal mode flag (D)—A flag in the P register which, when set, causes all

arithmetic operations to be performed in BCD.

Delay loop—A programming structure designed to take a specific amount

of time.

Disassemble—Change machine-language into assembly-language

mnemonics and hexadecimal operand fields.

Dot matrix—A rectangular pattern of dots that conveys information.

Editor/assembler—Computer program to enter, modify, and assemble

assembly-language programs.

Eight-bit code—Eight binary digits of information arranged in a particular
order.

Filter—Circuitry on the SID that can be programmed to reject certain

frequencies.

Flag—A bit used to signal a particular event. Each of the bits in the P register

is a flag.

Flag-modification instruction—Instruction that sets or clears a flag in the P

register.

Frequency—The rate (number of times per second) at which a waveform

repeats itself.

Fundamental frequency—The dominant frequency of a particular sound

waveform.

Harmonic—A frequency component of a waveform. This component has a

frequency that is a whole-number multiple of the fundamental frequency.

Hexadecimal number—Base-sixteen number using the numerals 0 through

9 and A through F and a "$" prefix.

High-level language—A programming language that has a structure and

syntax similar to English.

Immediate addressing mode—The operand is the second byte of the

instruction.

Implied addressing mode—The location of the operand is defined by the in

struction. No address is needed to locate the operand.

Indexed indirect addressing mode—Seldom used mode that adds the second

byte of the instruction and the number in the X register to identify the first

of two sequential page-zero memory locations that contain the address of

the operand.

Indirect addressing mode—In this mode, the second two bytes of the instruc

tion specify the address of the first of two sequential memory locations that

contains the destination address of the JMP instruction.
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Indirect indexed addressing mode—The second byte of the instruction iden

tifies the first of two sequential page-zero memory locations that contain

a 16-bit number which, when added to the number in the Y register, is the

address of the operand.

Input port—A set of one or more pins whose voltage levels determine the bit

values in a specific memory location.

Instruction—A set of one, two, or three eight-bit codes that cause the 6510

microprocessor to carry out one of the 56 operations in its instruction set.

Instruction set—The group of 56 instructions capable of being performed by

the 6510 microprocessor.

Interfacing—The process of connecting the computer to external devices.

Interrupt—A design feature of the 6510 microprocessor that allows an external

signal (interrupt request) to halt the program currently being executed, ex

ecute another program, and then return to execute the original program.

Interrupt flag (I)—A flag in the P register that is set whenever the

microprocessor is processing an interrupt. IRQ-type interrupts are not

recognized when this flag is set.

Interrupt request—An external signal on either the IRQ or NMI pins on the

6510 that signals the need for an interrupt.

Interrupt routine—The program that is executed when an interrupt request

is recognized.

IRQ-type interrupt—Interrupt requested on the IRQ pin on the 6510.

IRQ vectoi^-The 16-bit number stored in locations $FFFE and $FFFF thatiden

tifies the starting address of the IRQ-type interrupt routine.

Label—Labels are names used in assembly-language programs to identify the

addresses of certain instructions.

Logic operation—An operation accomplished with an AND, EOR, or ORA

instruction.

Loop—Programming structure that provides for the repetitive performance

of a programming task.

Low-level language—Programming language which, unlike English, is

similar to machine language.

Machine-language instruction—See "Instruction."

Machine-language program—A set of instructions stored in sequential

memory locations which, when read by the microprocessor, will perform
a specific task.

Mask—One of the two bytes involved in anAND instruction. The mask byte

has zeros in the bits that are not being tested and ones in the bits being
tested.

Memory map—Diagram showing how memory locations in the micro
computer system are allocated.
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Memory-mapped I/O—Technique used in 6510-based microcomputer

systems in which I/O ports are part of the memory organization of the

microcomputer.

Microcomputer clock—Electrical signal (square waveform) that repeats itself

1,022,727 times a second and is used to synchronize all of the micro

processor's read and write operations.

Microprocessor—The 6510 40-pin integrated circuit that performs all of the

operations described in the instruction set.

Mnemonic—One of the 56 three-letter words used by human beings to iden

tify a 6510 instruction. The part of an assembly language instruction that

identifies which of the 56 operations in the instruction set is to be executed.

Multiple-byte arithmetic—Arithmetic operations in which the numbers must

be represented by more than one byte.

Negative flag (N)—Flag in the P register that is set whenever the result of an

operation has a one in bit seven; otherwise, it is cleared.

Nibble—Four bits of binary information.

NMI-type interrupt—Interrupt requested with a signal on the NMI pin of the

6510. This interrupt is nonmaskable; it cannot be disabled by the I flag.

Non-volatile memory—Memory in which information is not lost whenpower

is removed.

Object program—The machine-language program that is produced when an

assembly-language program is assembled.

Offset—The second byte of a branch instruction. An eight-bit signed number

that is added to the program counter when the branch is taken.

Op code—The first byte of any instruction used to identify one of the 56 opera

tions and one of the 13 addressing modes available to the 6510.

Operand—The eight-bit code that is the object of an instruction. The location

of the operand is either implied by the instruction or identifiedby the second

and/or third bytes of the instruction.

Operand field—The part of an assembly-language instruction that symbolizes

the location of the operand. The operand field of a jump, subroutine call,

or branch instruction contains a label for the address of the destination.

Operating system—A program that provides the microcomputer with essen

tial input and output capabilities.

Output port—A set of one or more pins whose voltage levels are determined

by the binary values of corresponding bits in some memory location.

Overflow flag (V)—Flag in the P register that is set when the sum or difference

of two eight-bit signed numbers either exceeds +127 or is less than -128.

Page—A set of 256 ($FF + 1) memory locations beginning at one of the follow

ing page boundaries: $0000, $0100, $0200, $0300, ..., $FF00.
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Page one—The set of 256 memory locations with addresses from $0100 to

$01FF. This is also known as the stack.

Page zero—The set of 256 memory locations with addresses from $0000 to

$00FF.

Parallel I/O—Input/output operations that involve several bits

simultaneously.

Pixel—Contraction of the words "picture element/7 One dot on the screen

of the video monitor.

Processor status register—Also known as the P register. The register in the

6510 that holds the N, V, B, D, I, Z, and C flags.

Program counter—16-bit register in the 6510 that contains the address of the

memory location of the next byte of the machine-language programbeing

executed.

Pseudo-code—An informal combination of assembly language and English

that a programmer may use to describe what a program is to do before

writing it.

RAM—See "Read/write memory/'

Read only memory (ROM)—Memory that can be read but cannot be modified

with a 6510 write operation. ROM is usually non-volatile memory.

Read operation—The 6510 copies a code in memory into one of its registers.

Read/write (R/W) line—Control bus line that informs the components of a

microcomputer whether a read or write operation is taking place.

Read/write (R/W) memory—Memorythat functions withboth read andwrite

operations.

Relative addressing mode—Used exclusively by branch instructions. The

second byte of the instruction, called the offset, is added to the program

counter to calculate the destination of the branch.

Relocatable program—A program that does not need to be modified if its loca

tion in memory is changed.

Resolution—A term related to the number of pixels on the screen.

ROM—See "Read only memory."

Screen—The face of the video monitor or TV set.

Screen character codes—Eight-bit codes which when placed in screen

memory, cause a specific character to appear on the screen.

Screen memory—A bank of 1,000 memory locations whose contents deter

mine which characters appear on the screen.

Serial I/O—A form of I/O using a one-bit I/O port in which binary codes are
input or output timewise.

Set—Give one or more bits a binary value of one.
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Single-step mode—A process of executing a program one instruction at a

time.

Sound interface device (SID)—The integrated circuit used to produce sound

effects.

Source program—The assembly-language program that is used to produce

the corresponding machine-language program called the object program.

Sprite—A pattern of dots on the screen whose position, color, and shape can

be programmed.

Stack—256 memory locations with addresses from $0100 to $01FF.

Stack operation instructions—6510 instructions that save (push) codes on

the stack or read (pull) codes from the stack. Also includes TSX and TXS

instructions.

Stack pointer (S)—Eight-bit 6510 register that identifies the least-significant

byte of the address of the next available stack location.

Status bit—Same as flags or condition codes.

Symbol—A name for an address in the operand field of an assembly-language

instruction.

Test instructions—The compare and BIT instructions.

Toggle—Alternately switch on and off.

Two's complement—Number obtained by forming the complement and add

ing one.

Underflow—Term used in timing and counting applications to indicate when

a register has decremented through zero.

Vector—A 16-bit number that identifies the address of the destination of a

jump instruction or the starting address of an interrupt routine.

Video interface chip (VIC)—The integrated circuit, actually known as the

VIC-II, used by the Commodore 64 to provide output video information

to the screen.

Volatile memory—Loses stored information when power is removed.

Write-only registers—Registers that function only with write operations.

These registers cannot be read.

Write operation—The 6510 copies a code from one of its register into a

memory location.

X register—Eight-bit register in the 6510 used for data transfers and as an in

dex in the indexed addressing modes.

Y register—Eight-bit register in the 6510 used for data transfers and as an in

dex in the indexed addressing modes.

Zero flag (Z)—Flag in the P register that is set when the result of an opera

tion has zeros in all eight bits; otherwise, the flag is cleared.
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Zero page—See ''Page zero.''

Zero-page addressing mode—The operand is in the page-zero location whose

least-significant byte is the second byte of the instruction.

tion whose least-significant byte is the sum of the second byte of the instruc

tion and the number in an index register.



Index

Accumulator, 16,18,19

ADC instruction, 58, 60, 61

Address, 6, 260

Address bus, 6

Addressing modes, 25

absolute, 30

absolute indexed, 134

accumulator, 118

immediate, 30

implied, 31

indirect, 157

indirect indexed, 140

indexed indirect, 146

relative, 94

zero-page, 30

zero-page indexed, 138

ADH, 25, 264

ADL, 15, 264

ADSR envelope, 183

attack, 138

decay, 183

release, 183

sustain, 183

Analog-to-digital conversion, 236

AND instruction, 77, 78, 79

ASCII, 111

ASCII-to-hexadecimal, 114

ASL instruction, 117,118

Assembler, 24, 48

Backward branch, 94, 98

Base address, 135

Base two, 259

BASIC interpreter, 5

BASIC music interpreter, 199

BCC instruction, 91,102

BCD (see binary-coded decimal)

BCD-to-binary routine, 130

BCS instruction, 91,102

BEQ instruction, 91,102

Binary-coded decimal (BCD), 67, 84

Binary numbers, 259, 262

Binary-to-BCD routine, 129

Bit instruction, 93,102

Bit-mapped graphics, 210

demonstration program, 221

graphing, 220

Bit-mapped memory, 210

Bit-mapped mode, 210

BMI instruction, 91

BNE instruction, 91> 102

Borrow,mo䕈ጰ灕9Binary-to-BCD

91爀�퀆踀٠㸀2�2�
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Character memory, 207

Character plot routine, 148

Character ROM, 208

CIA, 225

CLC instruction, 58, 59, 60

CLD instruction, 58, 59

Clear, 58, 81

Clearing, 48, 81

Clearing bit-mapped memory, 144

CLI instruction, 154,167

CLV instruction, 58, 59, 71

CMP instruction, 93,101

Code-display routine, 121

Code-shift routine, 119

Color memory, 147, 206

Comparison instructions, 101

Complement, 64, 65, 79

Computer, 57

Computer-assisted instruction

program, 73, 87,131, 269

Computer programming language, 1

Condition code, 58

Control bus, 9

Controller, 57

Counting/timing, 242

CPX instruction, 93,101

CPY instruction, 93,101

Data bus, 8

Data processor, 57

Data transfer instructions, 43

Decimal-mode arithmetic, 67

DEC instruction, 93, 99

Decimal-mode flag (D), 58, 68

Decimal numbers, 259

Delay loop, 100

Delay routine, 246, 248

Development system, 48

DEX instruction, 93, 99

DEY instruction, 93, 99

Directive, 49,140

Disassembled, 156

Division, 129

Dot matrix, 207

Editor/assembler, 35, 48

Eight-bit code, 4, 260

Eight-bit multiplication routine, 128

EOR instruction, 77, 78, 79

Exclusive OR, 77

Face value, 261

Filter, 181

FIFO buffer, 172

Hag, 58

Flag-modification instructions, 59

Forward branch, 94

Four-bit multiplication routine, 127

Frequency, 180

Frequency-counting routine, 253

Fundamental, 180

Harmonic structure, 180

Harmonics, 180

Hexadecimal numbers, 265

Hexadecimal-to-ASCII, 111

High-level language, 1

Image, 184

INC instruction, 93, 99

Indexed addressing modes, 133

ABS,X, 134,135

ABS,Y, 134

(IND,X), 146

(IND,Y), 140,141

ZPage,X,138,139

Z Page,Y, 138

Indirect addressing, 157

Indirect jump vector, 158

Input/output, 5, 20, 226

Input port, 226

Instruction, 10, 23

Instruction set, 10, 26, 272

Interfacing, 228

Interrupt, 166

Interrupt-driven keyboard routine,

171

Interrupt flag (I), 58,167

Interrupt routine, 166

INX instruction, 93, 99

INY instruction, 93, 99

IRQ-type interrupt, 166
IRQ vector, 168
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JMP instruction, 154,155

JMP indirect, 157

Joystick input routine, 231

JSR instruction, 58, 71,154,159

Jump table, 157

Keyboard input routine, 123,145,

155,172,175

Label, 32, 72,155

LDA instruction, 13,14, 41, 43

LDX instruction, 41, 43

LDY instruction, 41, 43

Least-significant byte (LSB), 63

Logic operations, 77

Loop, 96, 98, 99,109

Low-level language, 1

LSR instruction, 117,118

Machine-language program, 13,17

Mask, 83

Memory map, 6, 7

Memory-mapped I/O, 227

Microcomputer, 2

Microcomputer clock, 9,10

Microprocessor, 2, 4

Mnemonic, 10, 24, 26

Monitor, 35

Most-significant byte (MSB), 63

Multiple-byte addition, 63

Multiple-byte subtraction, 66

Multiplicand, 126

Multiplication, 126,127

Multiplier, 126

Negative flag (N), 58, 70, 81, 93

Negative numbers, 70

Nested subroutines, 162

Nibble, 67, 265

Nonmaskable interrupt (NMI), 175

Nonvolatile memory, 5

Note dynamics, 183

Numeration, 259

Object program, 33

Octaves, 180,191

Offset, 94

One-bit I/O routine, 238

Op code, see Operation code

Operand, 25

Operand field, 32

Operating system, 5

Operation code, 23, 26

ORA instruction, 77, 78, 79

Output port, 227

Overflow flag (V), 58, 71, 93

Page, 136

Page boundary, 136

Page crossing, 137

Page one, 153

Page zero, 30,138

Parallel I/O, 227

Partial products, 127

PHA instruction, 154,163

PHP instruction, 154,163

Pixel, 207, 211

PLA instruction, 154,163

Place value, 261

PLP instruction, 154,163

Potentiometer inputs, 235

Processor status register, 19, 20, 58,

93

Processor status register flags, 58

B flag, 169

C flag, 59, 93

D flag, 68

I flag, 168

N flag, 70,81,93

Vflag, 71, 81,93

Z flag, 81, 93

Program counter, 19, 20, 92,153

Programming form, 35

Pseudo-code, 52

Pulse counting, 250

Pulse width, 18i, 182

Push-down stack, 160

RAM, see read/write memory

Ramp waveform, 181,182
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Read only memory (ROM), 4

Read operation, 4

Read/write line (R/Wline), 9

Read/write (R/W) memory, 4

Reading the POT inputs, 235

Relocatable, 156

Resolution, 210

ROM, see read only memory

ROM switching, 219

ROL instruction, 117,118

ROR instruction, 117,118

RTI instruction, 154,168

RTS instruction, 34, 71,154,159,

162

Source program, 33

Sprite routines, 46,105

Square waveform, 181,182

STA instruction, 13,15, 41

Stack, 160

Stack-operation instructions, 154,

162

Stack pointer (S), 19, 20,160,162

Status bit, 58

Storing keyboard codes, 145

STX instruction, 41, 43

STY instruction, 41, 43

. Subroutine, 162

Symbol, 32

SBC instruction, 58, 64

Screen character code, 204

Screen memory, 204

SEC instruction, 58, 59

SED instruction, 58, 59, 68

SEI instruction, 154

Serial I/O, 227

Set, 58, 81

Shift and rotate, 117

SID routines, 45,105,136

delay/tempo, 195

frequency control, 193

song, 197

song table, 198

potentiometer input, 235

Signed-number arithmetic, 69

Sine waveform, 181

Single-step mode, 53

6581 registers, 184,185

6567 VIC II, 203 '
6510 microprocessor

architecture, 19

I/O ports, 20

microprocessor, 4

registers, 18,19

6526, CIA, 225

counter/timers, 242

data-direction registers, 228

input pins, 226

interrupts, 224, 245, 246

output pins, 227

time-of-day (TOD) clock, 67, 84,
104,126

Test instructions, 101

TAX instruction, 41, 46, 47

TAY instruction, 41, 46

Timbre, 180

Timing routines, 108, 246, 248,250,

253

Triangle waveform, 181

Toggle, 82

TSX instruction, 154,166

Two's complement, 65, 69

TXA instruction, 41, 46, 47

TXS instruction, 154,166

TYA instruction, 41, 46

Underflow, 243

Vector, 158

VIC

bank switching, 203

background color register, 207

character memory, 207

character ROM, 208

color codes, 206

color memory, 206

exterior color register, 207

routines, 45, 81, 82, 83,105,137,

147,149,203

screen memory, 204

Volatile memory, 5

Volume, 180
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Waveform, 181

Write-only register, 106,184

Write operation, 5

X register, 19,134

Y register, 19,141

Zero flag (Z), 58, 81, 93

Zero page, see page zero





Documentation for

Diskette to Accompany

Assembly Language

Programming with the

Commodore 64

This documentation is applicable only if you have purchased the kit or the

diskette that includes a floppy disk containing all of the programs in Assembly

Language Programming with the Commodore 64. All of the assembly language

programs have been assembled and the machine language codes are stored in

sequential (SEQ) files on the disk. The BASIC programs in the book are stored

as PRG files. Refer to the disk directory on page 294. A description of how to use

the disk follows.

To load a BASIC program from the disk type

LOAD "FILENAME",8

where FILENAME is one of the names given in quotes in the disk directory on

page 294. To illustrate, Example 2-11 in the book is a BASIC program. In the

disk directory it is listed as EX 2-11. To load it into the computer's memory, insert

the disk into the disk drive and then type

LOAD "EX2-11",8

The program will be loaded. When the disk drive stops, the program can be

executed from BASIC with the RUN command.

293
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To load one of the machine language programs, stored as sequential (SEQ)

files, you must first load the BASIC program EX 2-11. When EX 2-11 is loaded,

RUN it. It will ask for a file name. Type in the file name shown in the disk

directory. For example, if you wish to load the program identified in the book as

Example 3-5 and in the disk directory as EX 3-5, then type

EX 3-5

when the file name is requested. Example 2-11 reads the program codes stored

on the disk, prints the codes on the screen, and POKEs them into the memory

locations identified in the book. Once the codes are loaded the machine lan

guage program can be executed from BASIC with a SYS xxxx command, where

xxxx is the starting address of the program expressed in decimal. The program

listed as EX 2-11 prints the starting and ending addresses of the machine lan

guage program it stores in memory.

What follows are a few comments about some programs shown on the disk

directory.

"EX 3-5"—Load and RUN the "CLEAR SID" BASIC program before using the SYS

49152 command to execute EX 3-5.

"EX 3-6"—Load and RUN "EX 3-7" to create a sprite before executing EX 3-6.

"EX 3-10"—This program is only of use to owners of the French Silk "Develop-64"

package.

"EXERCISE 4-1"—This is the BASIC program listed in the first exercise at the end of

Chapter 4. To use it, first load both EX 4-13 and CAI PROGRAM.

"EX 4-13"—See the note on "EXERCISE 4-1".

"EX B-l"—This is a repeat of the CAI program. It is listed in Appendix B in the book.

It contains the same codes as the file called "CAI PROGRAM".

"EX 5-8"—Call this program as a subroutine from the EX 5-8 BASIC program. Load

EX 5-8, then load EX 5-8 BASIC.

"EX 5-10"—Be sure to load the CAI PROGRAM before running this program. Also,

call EX 5-10 as a subroutine from the EX 5-10 BASIC program on the disk. Load EX

5-10, then CAI PROGRAM, then EX 5-10 BASIC.

"EX 6-14"—Load and run the MAKE SPRITE program before executing this program.

"EX 6-15"—Before executing this program, clear the SID registers by running the

CLEAR SID program.

"EX 6-16"—Call this program as a subroutine from the BASIC program identified as

EX 6-17. First load EX 6-16, then load and RUN EX 6-17. You will need a game

paddle with a fire button plugged into Control Port 2.
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"EX 6-18&19"—These programs are frequently used together, so we placed them in a

single sequential file.

"EXS 7-3&7-4"—This file includes the routines in EX 6-18&19 which are called as

subroutines. Test all of these routines with the program in EX 7-5.

"EX 7-13"—Load the CAI PROGRAM file before executing this program.

"EX 8-4 ETC/'—This file includes Examples 8-4, 8-10, 8-12, 8-13, and 8-14 in the

book.

"EX 8-8 ETC/'—This file includes Examples 8-8f 8-9, 6-18, 6-19, 7-3, 7-4, and 9-2 in

the book.

"EX 8-6"—Be sure to load the EX 8-6 DATA file before executing this program.

"EX 9-5A"—Also load EX 9-5B.

"EX 9-6A"—Also load EX 9-6B.

"SID SUBRTNS"—Includes Examples 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8,

10-9,10-10, and 10-12. All of these subroutines are called from EX 10-11.

"EX 10-11"—Load SID SUBRTNS, SONG TABLE, and FREQ TABLE before execut

ing this program.

"BMM GRAPHICS"—All of the bit-mapped graphics routines in Chapter 11 are

stored in this file. Test them with EX 11-8, which calls them as subroutines.

"EX 12-2"—Load the BMM GRAPHICS routines before calling this program as a sub

routine from the BASIC program titled EX 12-3. Connect a game paddle to Control

Port 2.

"EX 12-8"—A source of pulses connected to the CNT pin, pin number 6 on the user

port, is required to test this program.

"EX 12-9"—Like EX 12-8, a source of pulses must be connected to the CNT pin, pin 6

on the user port, to test this program. This program is called as a subroutine from

EX 12-10 or EX 12-11.
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Virtually instant access to more than 75 programs is within your grasp. Because instead of

spending hours keyboarding code, all you have to do is boot a single diskette!

What's more, you'll be able to get right into such programs as ...

• Bit-Mapped Graphics

• Computer-Assisted Instruction: gives you a window into how assembly language is
performed.

• Song Playing: play the music already programmed or compose your own.

Here's How To Order Your Copy
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Prepublication. reviewers say:

". . ,(7ii assembly language guide that's truly dedicated to the Commodore 64. . .the

writing style, exercises, and examples arc excellent!"

"Dc Jong understands that it's essential to start at the beginning, but miraculously has

found a -way to do this without insulting the educated reader. . .this is the best written

micro book I've come across in recent history!"

Assembly Language Programming

with the Commodore 64
Marvin L De Jong

Here is the comprehensive introduction to assembly language for beginning Com

modore 64 programmers! This unique guide offers extensive coverage on how to write,

debug, and execute assembly language programs—complete with numerous exercises

and problems designed to familiarize you with the instruction set of the 6510

microprocessor inside the Commodore 64. You'll also find chapter reviews, exercise

sets, and glossaries. . .plus these important assembly language topics:

• Data transfer instructions

• Logic operations

• Branches and loops

• Shift and rotate instructions

• Input/Output

• Programming the 6581 sound interface device

• Applications using the 6567 video interface chip, and much more!
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Also Available.. .Optional Diskette

This diskette contains all the programs from the text, designed to save you the time and

trouble of keyboarding. See the insert inside the book for ordering information.
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